PLD법에 의한 혼합된 희토류계 (Nd_{1/3}Eu_{1/3}Gd_{1/3})Ba₂Cu₃O_{7-x} 고온 초전도 박막 고락길^{1.5}, 배성환⁴, 정명진⁴, 장세훈^{1.2}, 송규정³, 박찬⁴, 손명환¹ 강석일³, 오상수¹, 하동우¹, 하홍수¹, 김호섭¹, 김영철⁵ 한국전기연구원¹, 창원대학교², 전북대학교³, 서울대학교⁴, 부산대학교⁵ ## Mixed rare earth (Nd_{1/3}Eu_{1/3}Gd_{1/3})Ba₂Cu₃O_{7-d} thin films by PLD Rock-kil Ko^{1,5}, Sung-hwan Bae⁴, Myung-Jin Jung⁴, Se-Hoon Jang^{1,2}, Kyu-jeong Song³, Chan Park⁴, Myung-Hwan Sohn¹ Suk-ill Kang³, Sang-soo Oh¹, Dong-woo Ha¹, Hong-soo Ha¹, Ho-sup Kim¹, and Young-cheol Kim⁵ Korea Electrotechnology Resarch Institute¹, Changwon National Univ.², Chonbuk National Univ.³ Seoul National Univ.⁴, Pusan National Univ.⁵ Abstract: In order to investigate the possibility of using mixed rare earth (Nd_{1/3}Eu_{1/3}Gd_{1/3})Ba₂Cu₃O_{7-x} (NEG123) as the superconducting layer of the HTS coated conductor, the NEG123 thin film was deposited epitaxialy on LAO(100) single crystal and IBAD_YSZ metal templates by pulsed laser deposition. Systematic studies were carried out to investigate the influences of deposition parameters of PLD on the micro structure, texture and superconducting properties of NEG-123 coated conductor. Deposition at oxygen partial pressure of 600 mTorr was needed to routinely obtain high quality NEG123 films with J_C's (77K) over 2 MA/cm² and Tc's over 90K (ΔT~2 K). We verified from magnetization study that the NEG123 has an improved in-field J_C as the field increases at temperatures between 10 K and 77 K compared with Gd123. The J_C (77K, self field) and the value of onset T_C of NEG123 thin film on LAO substrate was 4.0MA/cm² and 92K, respectively. This is the first report, to the best of our knowledge, of coated conductors with NEG123 film as the superconducting layer which have Ic and Jc over 40 A/cm-width and 1.6 MA/cm² at 77K, self field. This study shows the possibility of using NEG123 film as the superconducting layer of the HTS coated conductor which can be used in high magnetic field power electric devices. Key Words: mixed rare earth, NEG123, Gd123, REBCO, coated conductor, pulsed laser deposition