Browse > Article

Degradation Mechanisms of Organic Light-emitting Devices with a Glass Cap  

Yang Yong Suk (Electronics and Telecommunications Research Instittue)
Chu Hye Yong (Electronics and Telecommunications Research Instittue)
Lee Jeong-Ik (Electronics and Telecommunications Research Instittue)
Park Sang-He (Electronics and Telecommunications Research Instittue)
Hwang Chi Sun (Electronics and Telecommunications Research Instittue)
Chung Sung Mook (Electronics and Telecommunications Research Instittue)
Do Lee-Mi (Electronics and Telecommunications Research Instittue)
Kim Gi Heon (Electronics and Telecommunications Research Instittue)
Publication Information
Journal of the Korean Vacuum Society / v.15, no.1, 2006 , pp. 64-72 More about this Journal
Abstract
We demonstrated organic light-emitting devices (OLEDs) based on the organic thin-film materials such as tris-(8-hydroxyquinoline) aluminum $(Alq_3)$. The structure of OLEDs was vacuum deposited upon transparent and thin glass substrates pre-coated with a transparent, conducting indium tin oxide thin film. The luminance characteristics, current, capacitance, and dispersion factor for degraded OLEDs, which were made by various bias currents $(0.5mA\;{\leq}\;I_{Bias}\;{\leq}9mA)$, are studied. The current dependences of lifetime were divided at approximately 2mA, and they represented nearly linear behaviors but had different slopes in a logarithmic plot of lifetime versus bias current. With lighting OLEDs, the anomaly of capacitance, as shown in the CV curve, occurred because of two factors, polarization in the bulk of organic materials and the interface between the metal and organic layers. In decayed OLEDs that had lower bias currents of less than 2mA, it was found that the degradation of luminance was related to both the decrease of polarization and to the lowering of the injection barrier.
Keywords
OLED; Lifetime; Capacitance; Energy barrier height;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, Science 283, 822 (1999)   DOI
2 Y. S. Yang, S. H. Kim, J. Lee, H. Y. Chu, L. Do, H. Lee, J. Oh, and T. Zyung, Appl. Phys. Lett. 80, 1595 (2002)   DOI   ScienceOn
3 S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969), pp. 492-501
4 G. Parthasarathy, P. E. Burrows, V. Khalfin, G. G. Kozlov, and S. R. Forrest, Appl. Phys. Lett. 72, 2138 (1998)   DOI   ScienceOn
5 H. Aziz, Z. D. Popovic, N. Hu, A. Hor, and G. Xu, Science 283, 1900 (1999)   DOI   ScienceOn
6 Y. Hamada, C. Adachi, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. 31, 1812 (1992)   DOI
7 L. S. Hung, L. S. Liao, C. S. Lee, and S. T. Lee, J. Appl. Phys. 86, 4607 (1999)   DOI   ScienceOn
8 C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987)   DOI
9 P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, Appl. Phys. Lett. 65, 2922 (1994)   DOI   ScienceOn
10 S. Barth, U. Wolf, H. Bssler, P. Mller, H. Riel, H. Vestweber, P. F. Seidler, and W. $Rie{beta}$, Phys. Rev. B 60, 8791 (1999)   DOI
11 K. Nagayama, T. Yahagi, H. Nakada, T. Tohma, T. Watanabe, K. Yoshida, and S. Miyaguchi, Jpn. J. Appl. Phys. 36, L1555 (1997)   DOI
12 S. T. Lee, X. Y. Hou, M. G. Mason, and C. W. Tang, Appl. Phys. Lett. 72, 1593 (1998)   DOI   ScienceOn
13 K. K. Lin, S. J. Chua, and S. F. Lim, J. Appl. Phys. 90, 976 (2001)   DOI   ScienceOn
14 G. G. Malliaras, Y. Shen, D. H. Dunlap, H. Murata, and Z. H. Kafafi, Appl. Phys. Lett. 79, 2582 (2001)   DOI   ScienceOn
15 H. Aziz, Z. D. Popovic, C. P. Tripp, N. Hu, A. Hor, and G. Xu, Appl. Phys. Lett. 72, 2642 (1998)   DOI   ScienceOn
16 Y. S. Yang, S. J. Lee, S. H. Kim, B. G. Chae, and M. S. Jang, J. Appl. Phys. 84, 5005 (1998)   DOI   ScienceOn