• 제목/요약/키워드: Thin film transistors

검색결과 869건 처리시간 0.036초

수소화된 비정질 실리콘 박막 트랜지스터의 이차원 소자 시뮬레이터 TFT2DS (Two-Dimensional Device Simulator TFT2DS for Hydrogenated Amorphous Silicon Thin Film Transistors)

  • 최종선
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권1호
    • /
    • pp.1-11
    • /
    • 1999
  • Hyrdogenated amorphous silicon thin film transistors are used as a pixel switching device of TFT-LCDs and very active research works on a-Si:H TFTs are in progress. Further development of the technology based on a-Si:H TFTs depends on the increased understanding of the device physics and the ability to accurately simulate the characteristics of them. A two-dimensional device simulator based on the realistic and flexible physical models can guide the device designs and their optimizations. A non-uniform finite-difference TFT Simulation Program, TFT2DS has been developed to solve the electronic transport equations for a-Si:H TFTs. In TFT2DS, many of the simplifying assumptions are removed. The developed simulator was used to calculate the transfer and output characteristics of a-Si:H TFTs. The measured data were compared with the simulated ones for verifying the validity of TFT2DS. Also the transient behaviors of a-Si:H TFTs were calculated even if the values of the related parameters are not accurately specified.

  • PDF

운모 기판을 플렉시블 다결정 실리콘 박막 트랜지스터에 적용하기 위한 버퍼층 형성 연구 (Formation of a Buffer Layer on Mica Substrate for Application to Flexible Thin Film Transistors)

  • 오준석;이승렬;이진호;안병태
    • 한국재료학회지
    • /
    • 제17권2호
    • /
    • pp.115-120
    • /
    • 2007
  • Polycrystalline silicon (poly-Si) thin film transistors (TFTs) might be fabricated on the mica substrate and transferred to a flexible plastic substrate because mica can be easily cleaved into a thin layer. To overcome the adhesion and stress problem between poly-Si film and mica substrate, a buffer layer consisting of $SiO_x/Ta/Ti$ three layers has been developed. The $SiO_x$ layer is for electrical isolation, the Ti layer is for adhesion of $SiO_{x}$ and mica. and Ta is for stress relief between $SiO_x$ and Ti. A TFT was fabricated on the mica substrate by a conventional Si process and was successfully transferred to a plastic substrate.

Sensor Applications of Thin-Film Transistors - Photosensor, Magnetic Sensor, Temperature Sensor and Chemical Sensor -

  • Kimura, Mutsumi;Miura, Yuta;Ogura, Takeshi;Hachida, Tomohisa;Nishizaki, Yoshitaka;Yamashita, Takehiko;Shima, Takehiro;Hashimoto, Hayami;Yamaguchi, Yohei;Hirako, Masaaki;Yamaoka, Toshifumi;Tani, Satoshi;Imuro, Yoshiki;Bundo, Kosuke;Sagawa, Yuki;Setsu, Koushi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.957-960
    • /
    • 2009
  • Sensor applications of thin-film transistors (TFTs), such as photosensor, magnetic sensor, temperature sensor and chemical sensor, are introduced. Active-matrix circuits and amplifying circuits using poly-Si TFTs are integrated with these sensors to improve sensor performances and generate additional functions. These sensors may be promising applications after flat-panel displays (FPDs) in giant-micro electronics.

  • PDF

4.1” Transparent QCIF AMOLED Display Driven by High Mobility Bottom Gate a-IGZO Thin-film Transistors

  • Jeong, J.K.;Kim, M.;Jeong, J.H.;Lee, H.J.;Ahn, T.K.;Shin, H.S.;Kang, K.Y.;Park, J.S.;Yang, H,;Chung, H.J.;Mo, Y.G.;Kim, H.D.;Seo, H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.145-148
    • /
    • 2007
  • The authors report on the fabrication of thin film transistors (TFTs) that use amorphous indium-gallium-zinc oxide (a-IGZO) channel and have the channel length (L) and width (W) patterned by dry etching. To prevent the plasma damage of active channel, a 100-nm-thckness $SiO_{x}$ by PECVD was adopted as an etch-stopper structure. IGZO TFT (W/L=10/50${\mu}m$) fabricated on glass exhibited the high performance mobility of $35.8\;cm^2/Vs$, a subthreshold gate voltage swing of $0.59V/dec$, and $I_{on/off}$ of $4.9{\times}10^6$. In addition, 4.1” transparent QCIF active-matrix organic light-emitting diode display were successfully fabricated, which was driven by a-IGZO TFTs.

  • PDF

스퍼터 증착된 Zinc Tin Oxide 박막 트랜지스터의 공정 압력에 따른 특성 연구 (The Properties of RF Sputtered Zinc Tin Oxide Thin Film Transistors at Different Sputtering Pressure)

  • 이홍우;양봉섭;오승하;김윤장;김형준
    • 반도체디스플레이기술학회지
    • /
    • 제13권1호
    • /
    • pp.43-49
    • /
    • 2014
  • Zinc-tin oxides (ZTO) thin film transistors have been fabricated at different process pressure via re sputtering technique. TFT properties were improved by depositing channel layers at lower pressure. From the analysis of TFTs comprised of multi layer channel, deposited consecutively at different sputtering pressure, it was suggested that the electrical characteristics of TFTs were mainly affected by interfacial layer due to their high conductance, however, the stability under the NBIS condition was influenced by whole bulk layer due to low concentration of positive charges, which might be generated by the oxygen vacancy transition, from Vo0 to $Vo^{2+}$. Those improvements were attributed to increasing sputtered target atoms and decreasing harmful effects of oxygen molecules by adopting low sputtering pressure condition.

A Multifunctional Material Based on Triphenylamine and a Naphthyl Unit for Organic Light-Emitting Diodes, Organic Solar Cells, and Organic Thin-Film Transistors

  • Kwon, Jongchul;Kim, Myoung Ki;Hong, Jung-Pyo;Lee, Woochul;Lee, Seonghoon;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1355-1360
    • /
    • 2013
  • We have developed a new multifunctional material, 4,4',4"-tris(4-naphthalen-2-yl-phenyl)amine (2-TNPA), which can be used as a blue-emitting and hole-transporting material in organic light-emitting diodes (OLEDs), as well as a donor material in organic solar cells (OSCs) and an active material in organic thin-film transistors (OTFTs). The OLED device doped with 3% 2-TNPA shows a maximum current efficiency of 3.0 $cdA^{-1}$ and an external quantum efficiency of 3.0%. 2-TNPA is a more efficient hole-transporting material than 4,4'-bis[N-(naphthyl-N-phenylamino)]biphenyl (NPD). Furthermore, 2-TNPA shows a power-conversion efficiency of 0.39% in OSC and a field-effect mobility of $3.2{\times}10^{-4}cm^2V^{-1}s^{-1}$ in OTFTs.

Polymer Gate Insulators에 따른 Pentacene Organic Thin-Film Transistors의 특성 분석 (Characteristics of Pentacene Organic Thin-Film Transistors with Different Polymer Gate Insulators)

  • 김정민;허현정;윤정흠;김재완;최영진;강치중;전동렬;김용상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1434-1435
    • /
    • 2006
  • 본 연구에서는 polymer gate insulators에 따른 pentacene 유기 박막 트랜지스터 (Organic Thin-Film Transistors)의 전기적 특성을 atom force microscope (AFM), x-ray diffraction (XRD) 그리고 I-V 측정을 이용하여 분석하였다. Pentacene 박막 트랜지스터의 전기적 특성은 pentacene의 증착 조건뿐만 아니라 polymer gate insulator에 따라 크게 영향을 받는다. 따라서 다양한 polymer 기판 위에 온도, 두께 그리고 증착 속도에 따라 pentacene을 증착 하였다. 그리고 증착된 pentacne을 AFM, XRD를 이용하여 pentacene의 구조, 결정화 그리고 grain 크기 등을 분석하였다. 또한 inverted stagger며 구조의 pentacene 박막 트랜지스터 소자를 제작하고 I-V 측정하여 그 결과를 분석하였다.

  • PDF

수소화된 비정질규소 박막트랜지스터의 누설전류 (Leakage Current of Hydrogenated Amorphous Silicon Thin-Film Transistors)

  • 이호년
    • 한국산학기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.738-742
    • /
    • 2007
  • 능동형 평판디스플레이 소자를 제작하기 위해 수소화된 비정질 규소 박막트랜지스터 (a-Si:H TFT)의 상부에 화소전극을 형성하는 과정에 따른 TFT의 특성 변화를 연구하였다. 화소전극 형성 전에 1 pA 수준의 오프상태 전류 및 $10^6$ 이상의 스위칭률을 보이던 TFT에 화소전극 공정을 행하면 오프상태 전류가 10 pA 이상으로 증가하여 소자특성이 악화되었다. 이러한 소자특성의 악화는 SiNx 보호막 표면의 플라즈마 처리로 개선될 수 있었는데, 특히 $N_2$ 플라즈마가 좋은 결과를 보였다. 화소전극 공정에 의해서 누설전류가 증가하는 것은 투명전도막 증착공정 중에 SiNx 보호막 표면에 전하가 축적되어 이에 유도되는 백채널의 캐리어 축적에 기인하는 것으로 추정된다.

  • PDF

Comparative Study on Hydrogen Behavior in InGaZnO Thin Film Transistors with a SiO2/SiNx/SiO2 Buffer on Polyimide and Glass Substrates

  • Han, Ki-Lim;Cho, Hyeon-Su;Ok, Kyung-Chul;Oh, Saeroonter;Park, Jin-Seong
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.749-754
    • /
    • 2018
  • Previous studies have reported on the mechanical robustness and chemical stability of flexible amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) on plastic substrates both in flat and curved states. In this study, we investigate how the polyimide (PI) substrate affects hydrogen concentration in the a-IGZO layer, which subsequently influences the device performance and stability under bias-temperature-stress. Hydrogen increases the carrier concentration in the active layer, but it also electrically deactivates intrinsic defects depending on its concentration. The influence of hydrogen varies between the TFTs fabricated on a glass substrate to those on a PI substrate. Hydrogen concentration is 5% lower in devices on a PI substrate after annealing, which increases the hysteresis characteristics from 0.22 to 0.55 V and also the threshold voltage shift under positive bias temperature stress by 2 ${\times}$ compared to the devices on a glass substrate. Hence, the analysis and control of hydrogen flux is crucial to maintaining good device performance and stability of a-IGZO TFTs.

Large Size and High Resolution Organic Light Emitting Diodes Based on the In-Ga-Zn-O Thin Film Transistors with a Coplanar Structure

  • Hong Jae Shin
    • 한국재료학회지
    • /
    • 제33권12호
    • /
    • pp.511-516
    • /
    • 2023
  • Amorphous In-Ga-Zn-O (a-IGZO) thin film transistors (TFTs) with a coplanar structure were fabricated to investigate the feasibility of their potential application in large size organic light emitting diodes (OLEDs). Drain currents, used as functions of the gate voltages for the TFTs, showed the output currents had slight differences in the saturation region, just as the output currents of the etch stopper TFTs did. The maximum difference in the threshold voltages of the In-Ga-Zn-O (a-IGZO) TFTs was as small as approximately 0.57 V. After the application of a positive bias voltage stress for 50,000 s, the values of the threshold voltage of the coplanar structure TFTs were only slightly shifted, by 0.18 V, indicative of their stability. The coplanar structure TFTs were embedded in OLEDs and exhibited a maximum luminance as large as 500 nits, and their color gamut satisfied 99 % of the digital cinema initiatives, confirming their suitability for large size and high resolution OLEDs. Further, the image density of large-size OLEDs embedded with the coplanar structure TFTs was significantly enhanced compared with OLEDs embedded with conventional TFTs.