DOI QR코드

DOI QR Code

A Multifunctional Material Based on Triphenylamine and a Naphthyl Unit for Organic Light-Emitting Diodes, Organic Solar Cells, and Organic Thin-Film Transistors

  • Kwon, Jongchul (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Kim, Myoung Ki (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Hong, Jung-Pyo (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Lee, Woochul (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Lee, Seonghoon (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Hong, Jong-In (Department of Chemistry, College of Natural Sciences, Seoul National University)
  • Received : 2013.01.15
  • Accepted : 2013.02.06
  • Published : 2013.05.20

Abstract

We have developed a new multifunctional material, 4,4',4"-tris(4-naphthalen-2-yl-phenyl)amine (2-TNPA), which can be used as a blue-emitting and hole-transporting material in organic light-emitting diodes (OLEDs), as well as a donor material in organic solar cells (OSCs) and an active material in organic thin-film transistors (OTFTs). The OLED device doped with 3% 2-TNPA shows a maximum current efficiency of 3.0 $cdA^{-1}$ and an external quantum efficiency of 3.0%. 2-TNPA is a more efficient hole-transporting material than 4,4'-bis[N-(naphthyl-N-phenylamino)]biphenyl (NPD). Furthermore, 2-TNPA shows a power-conversion efficiency of 0.39% in OSC and a field-effect mobility of $3.2{\times}10^{-4}cm^2V^{-1}s^{-1}$ in OTFTs.

Keywords

References

  1. Tang, C. W. App. Phys. Lett. 1986, 48, 183. https://doi.org/10.1063/1.96937
  2. Tang, C. W.; Van Slyke, S. A. App. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
  3. Tsumura, A.; Koezuka, H.; Ando, T. App. Phys. Lett. 1986, 49, 1210. https://doi.org/10.1063/1.97417
  4. Anthony, J. E. Chem. Rev. 2006, 106, 5028. https://doi.org/10.1021/cr050966z
  5. Shirota, Y. J. Mater. Chem. 2005, 15, 75. https://doi.org/10.1039/b413819h
  6. Shirota, Y. J. Mater. Chem. 2000, 10, 1. https://doi.org/10.1039/a908130e
  7. Roncali, J. Acc. Chem. Res. 2009, 42, 1719. https://doi.org/10.1021/ar900041b
  8. Lloyd, M. T.; Mayer, A. C.; Subramanian, S.; Mourey, D. A.; Herman, D. J.; Bapat, A. V.; Anthony, J. E.; Malliaras, G. G. J. Am. Chem. Soc. 2007, 129, 9144. https://doi.org/10.1021/ja072147x
  9. Roquet, S.; Cravino, A.; Leriche, P.; Aleveque, O.; Frere, P.; Roncali, J. J. Am. Chem. Soc. 2006, 128, 3459. https://doi.org/10.1021/ja058178e
  10. Kageyama, H.; Ohishi, H.; Tanaka, M.; Ohmori, Y.; Shirota, Y. Adv. Funct. Mater. 2009, 19, 3948. https://doi.org/10.1002/adfm.200901259
  11. Kwon, J.; Lee, W.; Kim, J.-y.; Noh, S.; Lee, C.; Hong, J.-I. New J. Chem. 2010, 34, 744. https://doi.org/10.1039/b9nj00431a
  12. Kwon, J.; Hong, J.-P.; Noh, S.; Kim, T.-M.; Kim, J.-J.; Lee, C.; Lee, S.; Hong, J.-I. New J. Chem. 2012, 36, 1813. https://doi.org/10.1039/c2nj40348j
  13. Kim, Y.-H.; Jeong, H.-C.; Kim, S.-H.; Yang, K.; Kwon, S.-K. Adv. Funct. Mater. 2005, 15, 1799. https://doi.org/10.1002/adfm.200500051
  14. Chien, C.-H.; Chen, C.-K.; Hsu, F.-M.; Shu, C.-F.; Chou, P.-T.; Lai, C.-H. Adv. Funct. Mater. 2009, 19, 560. https://doi.org/10.1002/adfm.200801240
  15. Tong, Q.-X.; Lai, S.-L.; Chan, M.-Y.; Lai, K.-H.; Tang, J.-X.; Kwong, H.-L.; Lee, C.-S.; Lee, S.-T. Chem. Mater. 2007, 19, 5851. https://doi.org/10.1021/cm0712624
  16. Li, J.; Liu, D.; Li, Y.; Lee, C.-S.; Kwong, H.-L.; Lee, S. Chem. Mater. 2005, 17, 1208. https://doi.org/10.1021/cm034731k
  17. Jiang, Z.; Liu, Z.; Yang, C.; Zhong, C.; Qin, J.; Yu, G.; Liu, Y. Adv. Funct. Mater. 2009, 19, 3987. https://doi.org/10.1002/adfm.200901534
  18. Moorthy, J. N.; Venkatakrishnan, P.; Huang, D.-F.; Chow, T. J. Chem. Commun. 2008, 2146.
  19. Okamoto, H.; Kawasaki, N.; Kaji, Y.; Kubozono, Y.; Fujiwara, A.; Yamaji, M. J. Am. Chem. Soc. 2008, 130, 10470. https://doi.org/10.1021/ja803291a
  20. Sonntag, M.; Kreger, K.; Hanft, D.; Strohriegl, P.; Setayesh, S.; Leeuw, D. d. Chem. Mater. 2005, 17, 3031. https://doi.org/10.1021/cm047750i
  21. Berggren, M.; Nilsson, D.; Robinson, N. D. Nat. Mater. 2007, 6, 3. https://doi.org/10.1038/nmat1817
  22. Kwon, J.; Hong, J.-P.; Lee, W.; Noh, S.; Lee, C.; Lee, S.; Hong, J.-I. Org. Electron. 2010, 11, 1103. https://doi.org/10.1016/j.orgel.2010.03.017
  23. Pandey, A. K.; Nunzi, J.-M. Adv. Mater. 2007, 19, 3613. https://doi.org/10.1002/adma.200701052
  24. Lu, J.; Xia, P. F.; Lo, P. K.; Tao, Y.; Wong, M. S. Chem. Mater. 2006, 18, 6194. https://doi.org/10.1021/cm062111o
  25. Cravino, A.; Roquet, S.; Aleveque, O.; Leriche, P.; Frere, P.; Roncali, J. Chem. Mater. 2006, 18, 2584. https://doi.org/10.1021/cm060257h
  26. Wang, F.; Luo, J.; Yang, K.; Chen, J.; Huang, F.; Cao, Y. Macromolecules 2005, 38, 2253. https://doi.org/10.1021/ma047561l
  27. Kwon, J.; Kim, M. K.; Hong, J.-P.; Lee, W.; Noh, S.; Lee, C.; Lee, S.; Hong, J.-I. Org. Electron. 2010, 11, 1288. https://doi.org/10.1016/j.orgel.2010.04.005
  28. Kim, M. K.; Kwon, J.; Hong, J.-P.; Lee, S.; Hong, J.-I. Bull. Korean Chem. Soc. 2011, 32. 2899. https://doi.org/10.5012/bkcs.2011.32.8.2899
  29. Moorthy, J. N.; Venkatakrishnan, P.; Natarajan, P.; Huang, D.-F. Chow, T. J. J. Am. Chem. Soc. 2008, 130, 17320. https://doi.org/10.1021/ja8042905
  30. D'Andrade, B. W.; Datta, S.; Forrest, S. R.; Djurovich, P.; Polikaropov, E.; Thompson, M. E. Org. Electron. 2005, 6, 11. https://doi.org/10.1016/j.orgel.2005.01.002

Cited by

  1. Vibrational Dynamics in Dendridic Oligoarylamines by Raman Spectroscopy and Incoherent Inelastic Neutron Scattering vol.118, pp.19, 2014, https://doi.org/10.1021/jp502735s
  2. Branched triphenylamine-based oligomers for organic electronics vol.56, pp.1, 2014, https://doi.org/10.1134/S181123821401007X
  3. Rational design of multifunctional star-shaped molecules with a 1,3,5-triazine core and different arms for application in organic light-emitting diodes and organic solar cells vol.21, pp.8, 2015, https://doi.org/10.1007/s00894-015-2761-7
  4. Substituted triphenylamines as building blocks for star shaped organic electronic materials vol.39, pp.3, 2015, https://doi.org/10.1039/C4NJ01695E
  5. Design of perylene-diimides-based small-molecules semiconductors for organic solar cells vol.115, pp.14, 2017, https://doi.org/10.1080/00268976.2017.1308028
  6. Vacuum processable donor material based on dithieno[3,2-b:2prime,3prime-d]thiophene and pyrene for efficient organic solar cells vol.4, pp.47, 2013, https://doi.org/10.1039/c4ra02895c
  7. Synthesis, Crystal Structure, and Photophysical Properties of Nickel Complex From Triphenylamine Schiff Base Ligand vol.46, pp.6, 2016, https://doi.org/10.1080/15533174.2014.989611
  8. Photo- and Redox-active Benzofuran-appended Triphenylamine and Near-infrared Absorption of Its Radical Cation vol.49, pp.6, 2013, https://doi.org/10.1246/cl.200161
  9. Substitution tuned electronic absorption, charge transfer and non-linear optical properties of some D-A type 2,4,6-trisubstituted-1,3,5-triazines: a DFT study vol.43, pp.1, 2020, https://doi.org/10.1007/s12034-020-2046-3
  10. Near-infrared absorption of a benzothiophene-appended triphenylamine radical cation: A novel molecular design of NIR-II dye vol.197, pp.None, 2013, https://doi.org/10.1016/j.dyepig.2021.109929