• Title/Summary/Keyword: Thin film residual stress

Search Result 129, Processing Time 0.029 seconds

Relationship between Film Density and Electrical Properties on D.C. Magnetron Reactive Sputtered Sn-doped ${In_2}{O_3}$Films (D.C. 마그네트론 반응성 스퍼터링법에 의한 Sn-doped ${In_2}{O_3}$ 박막의 밀도와 전기적 특성과의 관계)

  • 이정일;최시경
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.686-692
    • /
    • 2000
  • Tin-doped In2O3 (ITO) films were fabricated using a d.c. magnetron reactive sputteirng of a In-10 wt% Sn alloy target in an Ar and O2 gas mixture. To understand the behavior of the carrier mobility in ITO films with O2 partial pressure, the resistivity, carrier concentration and mobility, film density, and intrinsic stress in the films were measured with O2 partial pressure. It was found experimentally that the carrier mobility increased rapidly as the film density increased. In the ITO film with the density close to theoretical one, the mean free path was the same as the columnar diameter. This indicated that the mobility in ITO films was strongly influenced by the crystall size. However, in the case where the film density was smaller than a theoretical density, the mean free paths were also smaller the columnar diameter. It was analyzed that the electron scattering at pores and holes within the crystalline was the major obstacle for electron conduction in ITO films. The measurement of intrinsic stress in ITO films also made it clear that the density of ITO films was controlled by the bombardment of oxygen neutrals on the growing film.

  • PDF

Bond Strength of Wafer Stack Including Inorganic and Organic Thin Films (무기 및 유기 박막을 포함하는 웨이퍼 적층 구조의 본딩 결합력)

  • Kwon, Yongchai;Seok, Jongwon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.619-625
    • /
    • 2008
  • The effects of thermal cycling on residual stresses in both inorganic passivation/insulating layer that is deposited by plasma enhanced chemical vapor deposition (PECVD) and organic thin film that is used as a bonding adhesive are evaluated by 4 point bending method and wafer curvature method. $SiO_2/SiN_x$ and BCB (Benzocyclobutene) are used as inorganic and organic layers, respectively. A model about the effect of thermal cycling on residual stress and bond strength (Strain energy release rate), $G_c$, at the interface between inorganic thin film and organic adhesive is developed. In thermal cycling experiments conducted between $25^{\circ}C$ and either $350^{\circ}C$ or $400^{\circ}C$, $G_c$ at the interface between BCB and PECVD $ SiN_x $ decreases after the first cycle. This trend in $G_c$ agreed well with the prediction based on our model that the increase in residual tensile stress within the $SiN_x$ layer after thermal cycling leads to the decrease in $G_c$. This result is compared with that obtained for the interface between BCB and PECVD $SiO_2$, where the relaxation in residual compressive stress within the $SiO_2$ induces an increase in $G_c$. These opposite trends in $G_cs$ of the structures including either PECVD $ SiN_x $ or PECVD $SiO_2$ are caused by reactions in the hydrogen-bonded chemical structure of the PECVD layers, followed by desorption of water.

Residual Stress Behavior and Physical Properties of Colorless and Transparent Polyimide Films (무색 투명 폴리이미드 박막의 잔류응력 거동 및 특성분석)

  • Nam, Ki-Ho;Lee, Wansoo;Seo, Kwangwon;Han, Haksoo
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.510-517
    • /
    • 2014
  • A series of polyimide (PI) was prepared by reacting 4,4'-(hexafluoroisopropylidene)-diphthalic anhydride (6FDA) as the anhydride and bis(3-aminophenyl) sulfone (APS), bis[4-(3-aminophenoxy)-phenyl] sulfone (BAPS), 2,2-bis(4-aminophenyl)-hexafluoropropane (6FPD), 2,2-bis[4-(4-aminophenoxy)-phenyl]hexafluoropropane (6FBAPP), 2,2'-bis(trifluoromethyl)benzidine (TFDB), or 1,4-phenylenediamine (PDA) as the diamine. Residual stress behaviors were detected in-situ during thermal imidization of the polyimide precursors using a thin film stress analyzer (TFSA), and interpreted with respect to their morphology. According to the molecular orientation and packing order, the residual stress varied from 23.1 to 12.5 MPa, decreased with increasing chain rigidity. The thermal properties of the PI films were investigated using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and thermomechanical analysis (TMA). Their optical properties were measured by ultraviolet-visible spectrophotometer (UV-vis), and spectrophotometry. The properties of PI films were found to be strongly dependent upon the morphological structure. However, trade-offs between residual stress and optical properties were identified.

Growth of Single Crystalline 3C-SiC Thin Films for High Power Devices by CVD (CVD에 의한 고전력 디바이스용 단결정 3C-SiC 박막 성장)

  • Chung, Gwiy-Sang;Shim, Jae-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.98-102
    • /
    • 2010
  • This paper describes that single crystalline 3C-SiC (cubic silicon carbide) thin films have been deposited on carbonized Si(100) substrates using hexamethyldisilane (HMDS, $Si_2(CH_3){_6}$) as a safe organosilane single precursor and a nonflammable mixture of Ar and $H_2$ gas as the carrier gas by APCVD at $1280^{\circ}C$. The deposition was performed under various conditions to determine the optimized growth condition. The crystallinity of the 3C-SiC thin film was analyzed by XRD (X-ray diffraction). The surface morphology was also observed by AFM (atomic force microscopy) and voids between SiC and Si interfaces were measured by SEM (scanning electron microscopy). Finally, residual strain and hall mobility was investigated by surface profiler and hall measurement, respectively. From these results, the single crystalline 3C-SiC film had a good crystal quality without defects due to viods, a low residual stress, a very low roughness.

Evaluation for Thin Films Characteristics of Nitride Titanium-Chromium using Arc Ion Plating (아크이온플레이팅에 의한 질화 티탄-크롬의 박막특성 평가)

  • Fujita, Kazuhisa;Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.96-101
    • /
    • 2011
  • The thin films of TiN have been used extensively as wear-resistant materials, for instance, such as tools of high-speed cutting, metal mold forming etc. In these days, because the thin films capable of being used more severe conditions are needed, the technologies of arc ion plating are tried to improve its characteristics. The purpose of this study is to investigate the characteristics of thin films of (Ti,Cr)N compared with those of TiN. The method of arc ion plating, which is known as showing good tight-adherence and productivity, was used. After manufacturing thin films of ($Ti_{1-x}Cr_{x}$)N (x=0~1) with change of Cr in (Ti,Cr) target, atomic concentration, structure, size of crystallite, residual stress and surface roughness of thin films on substrate were investigated. As the results, it was confirmed that Cr atomic concentrations of thin films were proportionally changed with Cr atomic concentrations of target, and thin films of ($Ti_{1-x}Cr_{x}$)N (x=0~1) showed NaCl type and CrN existed as solid solution to TiN.

The Influences of Residual Stress on the Frequency of Ultrasonic Transducers with Composite Membrane Structure

  • Lee Seungmock;Kim Jong-Min;Shin Young-Eui
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.76-84
    • /
    • 2006
  • Arrayed ultrasonic sensors based on the piezoelectric thin film (lead-zirconate-titanate: Pb($Zr_{0.52}Ti_{0.48})O_{3}$) having composite membrane structure are fabricated. Different thermal and elastic characteristics of each layer generate the residual stress during the high temperature deposition processes, accomplished diaphragm is consequently bowing. We present the membrane deflection effects originated from the residual stress on the resonant frequencies of the sensor chips. The resonant frequencies ($f_r$) measured of each sensor structures are located in the range of $87.6{\sim}111\;kHz$, these are larger $30{\sim}40\;kHz$ than the resultant frequencies of FEM. The primary factors of $f_r$ deviations from the ideal FEM results are the membrane deflections, and the influence of stiffness variations are not so large on that. Membrane deflections have the effect of total thickness increase which sensitively change the $f_r$ to the positive direction. Stress generations of the membrane are also numerically predicted for considering the effect of stiffness variations on the $f_r$.

Effect of Hydrogen on Mechanical S tability of Amorphous In-Sn-O thin films for flexible electronics (수소 첨가에 의한 비정질 ITO 박막의 기계적 특성 연구)

  • Kim, Seo-Han;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.56-56
    • /
    • 2018
  • Transparent conductive oxides (TCOs) have attracted attention due to their high electrical conductivity and optical transparency in the visible region. Consequently, TCOs have been widely used as electrode materials in various electronic devices such as flat panel displays and solar cells. Previous studies on TCOs focused on their electrical and optical performances; there have been numerous attempts to improve these properties, such as chemical doping and crystallinity enhancement. Recently, due to rapidly increasing demand for flexible electronics, the academic interest in the mechanical stability of materials has come to the fore as a major issue. In particular, long-term stability under bending is a crucial requirement for flexible electrodes; however, research on this feature is still in the nascent stage. Hydrogen-incorporated amorphous In-Sn-O (a-ITO) thin films were fabricated by introducing hydrogen gas during deposition. The hydrogen concentration in the film was determined by secondary ion mass spectrometry and was found to vary from $4.7{\times}10^{20}$ to $8.1{\times}10^{20}cm^{-3}$ with increasing $H_2$ flow rate. The mechanical stability of the a-ITO thin films dramatically improved because of hydrogen incorporation, without any observable degradation in their electrical or optical properties. With increasing hydrogen concentration, the compressive residual stress gradually decreased and the subgap absorption at around 3.1 eV was suppressed. Considering that the residual stress and subgap absorption mainly originated from defects, hydrogen may be a promising candidate for defect passivation in flexible electronics.

  • PDF

Characteristics of polycrystalline AlN thin films deposited on 3C-SiC buffer layers for M/NEMS applications (3C-SiC 버퍼층위에 증착된 M/NEMS용 다결정 AlN 박막의 특성)

  • Chung, Gwiy-Sang;Lee, Tae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.462-466
    • /
    • 2007
  • Aluminum nitride (AlN) thin films were deposited on Si substrates by using polycrystalline (poly) 3C-SiC buffer layers, in which the AlN film was grown by pulsed reactive magnetron sputtering. Characteristics of grown AlN films were investigated experimentally by means of FE-SEM, X-ray diffraction, and FT-IR, respectively. The columnar structure of AlN thin films was observed by FE-SEM. X-ray diffraction pattern proved that the grown AlN film on 3C-SiC layers had highly (002) orientation with low value of FWHM (${\Theta}=1.3^{\circ}$) in the rocking curve around (002) reflections. These results were shown that almost free residual stress existed in the grown AlN film on 3C-SiC buffer layers from the infrared absorbance spectrum. Therefore, the presented results showed that AlN thin films grown on 3C-SiC buffer layers can be used for various piezoelectric fields and M/NEMS applications.

Characteristic properties of TiN thin films prepared by DC magnetron sputtering method for hard coatings (Hard coating 응용을 위한 DC 마그네트론 스퍼터링 방법을 이용하여 증착한 TiN 박막의 특성에 대한 연구)

  • Kim, Young-Ryeol;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.354-354
    • /
    • 2007
  • Titanium nitride (TiN) thin films are widely used for hard coatings due to their superior hardness. In this paper, we wanted see how the films properties are changed according to DC power. TiN thin films were deposited by direct current (DC) magnetron sputtering method using TiN compound target on silicon substrates. The films structural properties are examined by X-ray Diffractions (XRD) and tribological properties are measured by nano-indentation, nano-scratch tester, nano-stress tester. Especially in DC power of 150 W, the maximum hardness and the minimum residual stress of TiN film exhibited about 25 GPa and 1 GPa, respectively. And also, the critical load of TiN film prepared by magnetron sputtering method were measured over 30 N.

  • PDF

Resudual Stress Behavior and Characterization of Poly(urethane-imide) Crosslinked Networks (가교형 폴리우레탄이미드의 합성을 통한 잔류 응력 거동 측정 및 특성 분석)

  • Park, Mi-Hee;Yang, Seung-Jin;Jang, Wonbong;Han, Haksoo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.305-312
    • /
    • 2005
  • Poly(urethane-imide)s were prepared by reaction between crosslinkable endgroup containing soluble polyimide (PI) by chemical imidization and acrylate end-capped polyurethane (PU). Poly (amic acid) was prepared from 2,2'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 4,4'-oxydianiline (ODA) and then end-capped with maleic anhydride (MA). The PU prepolymers were prepared by the reaction of polycaprolactone diol, tolylene 2,4-diisocyanate and end-capped with hydroxyl ethyl acrylate. The effect of PU content on the residual stress behavior, morphology and thermal property was studied. The poly(urethane-imide)s were characterized by thin film stress analyzer (TFSA), XRD, TGA and DMTA. Low residual stress and slope in cooling curve were achieved by higher PU content. Compared to typical polyurethane, these polymers exhibited better thermal stability due to the presence of the imide groups. Finally the residual stress of poly(urethane-imide)s was strongly affected by the morphological structure.