• Title/Summary/Keyword: Thin film electrode

Search Result 925, Processing Time 0.03 seconds

Characteristics of Ti Thin films and Application as a Working Electrode in TCO-Less Dye-Sensitized Solar Cells

  • Joo, Yong Hwan;Kim, Nam-Hoon;Park, Yong Seob
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.93-96
    • /
    • 2017
  • The structural, electrical and optical properties of Ti thin films fabricated by dual magnetron sputtering were investigated under various film thicknesses. The fabricated Ti thin films exhibited uniform surfaces, crystallinity, various grain sizes, and with various film thicknesses. Also, the crystallinity and grain size of the Ti thin films increased with the increase of film thickness. The electrical properties of Ti thin films improved with the increase of film thickness. The results showed that the performance of TCO-less DSSC critically depended on the film thickness of the Ti working electrodes, due to the conductivity of Ti thin film. However, the maximum conversion efficiency of TCO-less DSSC was exhibited at the condition of 100 nm thickness due to the surface scattering of photons caused by the variation of grain size.

Fabrication of Mo Thin Film by Hydrogen Reduction of MoO3 Powder for Back Contact Electrode of CIGS (MoO3 분말의 수소환원을 통한 CIGS계 후면 전극용 Mo 박막제조)

  • Jo, Tae Sun;Kim, Se Hoon;Kim, Young Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.187-191
    • /
    • 2011
  • In order to obtain a suitable back contacting electrode for $Cu(InGa)Se_2$-based photovoltaic devices, a molybdenum thin film was deposited using a chemical vapor transport (CVT) during the hydrogen reduction of $MoO_3$ powder. A $MoO_2$ thin film was successfully deposited on substrates by using the CVT of volatile $MoO_3(OH)_2$ at $550^{\circ}C$ for 60 min in a $H_2$ atmosphere. The Mo thin film was obtained by reduction of $MoO_2$ at $650^{\circ}C$ in a $H_2$ atmosphere. The Mo thin film on the substrate presented a low sheet resistance of approximately $1{\Omega}/sq$.

XPS Study of MoO3 Interlayer Between Aluminum Electrode and Inkjet-Printed Zinc Tin Oxide for Thin-Film Transistor

  • Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.267-270
    • /
    • 2011
  • In the process of inkjet-printed zinc tin oxide thin-film transistor, the effect of metallic interlayer underneath of source and drain electrode was investigated. The reason for the improved electrical properties with thin molybdenum oxide ($MoO_3$) layer was due to the chemically intermixed state of metallic interlayer, aluminum source and drain, and oxide semiconductor together. The atomic configuration of three Mo $3d_3$ and $3d_5$ doublets, three different Al 2p core levels, two Sn $3d_5$, and four different types of oxygen O 1s in the interfaces among those layers was confirmed by X-ray photospectroscopy.

Physical and electrical characteristics of Pentacene thin films prepared by (유기 분자선 증착법에 의해 성막된 Pentacene 박막의 물리적, 전기적 특성에 관한 연구)

  • 김대엽;김대식;최종선;강도열;김영관
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.605-608
    • /
    • 1999
  • We report investigations on a Pentacene thin film as a component for active layer of Organic thin film transistors. Pentacene film was deposited by Organic Molecular Beam Deposition(OMBD) and Al electrode was deposoted by vacuum evaporation. Electrical characterization of Pentacene films were measured by the three-terminal contact resistance methods, as the results contact resistance between pentacene films and the Aluminium electrode is 5.064G$\Omega$. The Al contact with the pentacene shows the bottom contact resistance. From the current-voltage characteristics, electrical conductivity of the Pentacene film is found as ~ 10$^{-4}$ /cm. physical characterization of pentacene films were measured by UV-spectrum and Cyclic-Voltammetry method.

  • PDF

Optical Properties of Transparent Electrode ZnO Thin Film Grown on Carbon Doped Silicon Oxide Film (탄소주입 실리콘 산화막 위에 성장한 투명전극 ZnO 박막의 광학적 특성)

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.13-16
    • /
    • 2012
  • Zinc oxide (ZnO) films were deposited by an RF magnetron sputtering system with the RF power of 200W and 300W and flow rate of oxygen gases of 20 and 30 sccm, in order to research the growth of ZnO on carbon doped silicon oxide (SiOC) thin film. The reflectance of SiOC film on Si film deposited by the sputtering decreased with increasing the oxygen flow rate in the range of long wavelength. In comparison between ZnO/Si and ZnO/SiOC/Si thin film, the reflectance of ZnO/SiOC/Si film was inversed that of ZnO/Si film in the rage of 200~1000 nm. The transmittance of ZnO film increased with increasing the oxygen gas flow rate because of the transition from conduction band to oxygen interstitial band due to the oxygen interstitial (Oi) sites. The low reflectance and the high transmittance of ZnO film was suitable properties to use for the front electrode in the display or solar cell.

Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:Al and ITO Transparent Conducting layers (플랙시블 염료태양전지 특성에 미치는 ZnO 및 ITO의 영향)

  • Kim, Ji-Hoon;Kwak, Dong-Joo;Sung, Youl-Moon;Choo, Young-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1096_1097
    • /
    • 2009
  • Aluminium doped zinc oxide(ZnO:Al) thin film, which is mainly used as a transparent conducting electrode in electronic devices, has many advantages compared with conventional indium tin oxide(ITO). In this paper in order to investigate the possible application of ZnO:Al thin films as a transparent conducting electrode for flexible film-typed dye sensitized solar cell (FT-DSCs), ZnO:Al and ITO thin films were prepared on the polyethylene terephthalate (PET) substrate by r. f. magnetron sputtering method. Specially one-inched FT-DSCs using either a ZnO:Al or ITO electrode were also fabricated separately under the same manufacturing conditions. Some properties of both the FT-DSCs with ZnO:Al and ITO transparent electrodes, such as conversion efficiency, fill factor, and photocurrent were measured and compared with each other. The results showed that by doping the ZnO target with 2 wt% of $Al_2O_3$, the film deposited at discharge power of 200W resulted in the minimum resistivity of $2.2\times10^{-3}\Omega/cm$ and at ransmittance of 91.7%, which are comparable with those of commercially available ITO. Two types of FT-DSCs showed nearly the same tendency of I-V characteristics and the same value of conversion efficiencies. Efficiency of FT-DSCs using ZnO:Al electrode was around 2.6% and that of fabricated FT-DSCs using ITO was 2.5%. This means that ZnO:Al thin film can be used in FT-DSCs as a transparent conducting layer.

  • PDF

A Study on the Electronic Properties of Poly-$\gamma$ Benzyl $_D$-Glutamate Organic Thin Films (Poly-${\gamma}$ Benzyl $_D$-Glutamate 유기박막의 전자이동특성에 관한 연구)

  • Song, Jin-Won;Lee, Kyung-Sup;Lee, Bong-Ju;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.86-89
    • /
    • 2002
  • We give pressure stimulation into organic thin films and then manufacture a device under the accumulation condition that the state surface pressure is 10[mN/m]. In processing of a device manufacture, we can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/Poly-${\gamma}$ Benzyl $_D$-Glutamate/Al and Au/Poly-${\gamma}$ Benzyl $_D$-Glutamate/Au; the number of accumulated layers is 1, 3, 5 and 7. Also, we then examined of the MIM device by means of I-V. The I-V characteristic of the device is measured from 0 to +2[V]. We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system. LB film accumulated by monolayer on an ITO. In the cyclicvoltammetry, An Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode measured in $LiBF_4$ solution, stable up to 0.9V vs. Ag/AgCl.

  • PDF

Performance Improvement of Amorphous In-Ga-Zn-O Thin-film Transistors Using Different Source/drain Electrode Materials (서로 다른 소스/드레인 전극물질을 이용한 비정질 In-Ga-Zn-O 박막트랜지스터 성능향상)

  • Kim, Seung-Tae;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • In this study, we proposed an a-IGZO (amorphous In-Ga-Zn-O) TFT (thin-film transistor) with off-planed source/drain structure. Furthermore, two different electrode materials (ITO and Ti) were applied to the source and drain contacts for performance improvement of a-IGZO TFTs. When the ITO with a large work-function and the Ti with a small work-function are applied to drain electrode and source contact, respectively, the electrical performances of a-IGZO TFTs were improved; an increased driving current, a decreased leakage current, a high on-off current ratio, and a reduced subthreshold swing. As a result of gate bias stress test at various temperatures, the off-planed S/D a-IGZO TFTs showed a degradation mechanism due to electron trapping and both devices with ITO-drain or Ti-drain electrode revealed an equivalent instability.

A Study on the Electronic Properties of LB Thin Films (LB박막의 전자이동 특성에 관한 연구)

  • Song, Jin-Won;Choi, Young-Il;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.101-104
    • /
    • 2002
  • Abstract We give pressure stimulation into organic thin films and then manufacture a device under the accumulation condition that the state surface pressure is 10[mN/m]. In processing of a device manufacture, we can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/Poly-${\gamma}$ Benzyl $_D$-Glutamate/Al; the number of accumulated layers is 1, 3, 5 and 7. Also, we then examined of the MIM device by means of I-V. The I-V characteristic of the device is measured from 0 to +2[V]. We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system. LB film accumulated by monolayer on an ITO. In the cyclicvoltammetry, An Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode measured in $LiBF_4$ solution, stable up to 0.9V vs. Ag/AgCl.

  • PDF

Fabrication and Characterization of Organic Thin-Film Transistors by Using Polymer Gate Electrode (고분자 게이트 전극을 이용한 유기박막 트랜지스터의 제조 및 소자성능에 관한 연구)

  • Jang, Hyun-Seok;Song, Ki-Gook;Kim, Sung-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.370-374
    • /
    • 2011
  • A conductive PANI solution was successfully fabricated by doping with camphorsulfonic acid and the polymerization of aniline and the confirmation of doping were characterized by FTIR spectroscopy. In organic thin film transistors, PANI gate electrodes were spin-coated on a PES substrate and their conductivity variations were monitored by a 4-probe method with different annealing temperatures. The surface properties of PANI thin films were investigated by an AFM and an optical microscope, OTFTs with PANI gate electrode had characteristics of carrier mobility as large as 0.15 $cm^2$/Vs and on/off ratio of $2.4{\times}10^6$, Au gate OTFTs with the same configuration were fabricated to investigate the effect of polymer gate electrode for the comparison of device performances. We could obtain the comparable performances of PANI devices to those of Au gate devices, resulting in an excellent alternative as an electrode in flexible OTFTs instead of an expensive Au electrode.