• Title/Summary/Keyword: Thermostable xylanases

Search Result 7, Processing Time 0.021 seconds

Purification and Characterization of Two Thermostable Xylanases from Paenibacillus sp. DG-22

  • Lee, Yong-Eok;Lim, Pyung-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1014-1021
    • /
    • 2004
  • Two thermostable xylanases, designated XynA and XynB, were purified to homogeneity from the culture supernatant of Paenibacillus sp. DG-22 by ion-exchange and gel-filtration chromatography. The molecular masses of xylanases A and B were 20 and 30 kDa, respectively, as determined by SDS-PAGE, and their isoelectric points were 9.1 and 8.9, respectively. Both enzymes had similar pH and temperature optima (pH 5.0-6.5 and $70^{\circ}C$), but their stability at various temperatures differed. Xylanase B was comparatively more stable than xylanase A at higher temperatures. Xylanases A and B differed in their $K_m$ and $V_{max}$ values. XynA had a $K_m$ of 2.0 mg/ml and a $V_{max}$ of 2,553 U/mg, whereas XynB had a K_m$ of 1.2 mg/ml and a $V_{max}$, of 754 U/mg. Both enzymes were endo-acting, as revealed by their hydrolysis product profiles on birchwood xylan, but showed different modes of action. Xylotriose was the major product of XynA activity, whereas XynB produced mainly xylobiose. These enzymes utilized small oligosaccharides such as xylotriose and xylotetraose as substrates, but did not hydrolyzed xylobiose. The amino terminal sequences of XynA and XynB were determined. Xylanase A showed high similarity with low molecular mass xylanases of family 11.

Thermostable Xylanase from Marasmius sp.: Purification and Characterization

  • Ratanachomsri, Ukrit;Sriprang, Rutchadaporn;Sornlek, Warasirin;Buaban, Benchaporn;Champreda, Verawat;Tanapongpipat, Sutipa;Eurwilaichitr, Lily
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.105-110
    • /
    • 2006
  • We have screened 766 strains of fungi from the BIOTEC Culture Collection (BCC) for xylanases working in extreme pH and/or high temperature conditions, the so-called extreme xylanases. From a total number of 32 strains producing extreme xylanases, the strain BCC7928, identified by using the internal transcribed spacer (ITS) sequence of rRNA to be a Marasmius sp., was chosen for further characterization because of its high xylanolytic activity at temperature as high as $90^{\circ}C$. The crude enzyme possessed high thermostability and pH stability. Purification of this xylanase was carried out using an anion exchanger followed by hydrophobic interaction chromatography, yielding the enzyme with >90% homogeneity. The molecular mass of the enzyme was approximately 40 kDa. The purified enzyme retained broad working pH range of 4-8 and optimal temperature of $90^{\circ}C$. When using xylan from birchwood as substrate, it exhibits $K_m$ and $V_{max}$ values of $2.6{\pm}0.6\;mg/ml$ and $428{\pm}26\;U/mg$, respectively. The enzyme rapidly hydrolysed xylans from birchwood, beechwood, and exhibited lower activity on xylan from wheatbran, or celluloses from carboxymethylcellulose and Avicel. The purified enzyme was highly stable at temperature ranges from 50 to $70^{\circ}C$. It retained 84% of its maximal activity after incubation in standard buffer containing 1% xylan substrate at $70^{\circ}C$ for 3 h. This thermostable xylanase should therefore be useful for several industrial applications, such as agricultural, food and biofuel.

Production of Xylooligosaccharides with Thermostable Xylanases from the Streptomyces thermocyaneo-violaceus (내열성 방성균 Streptomyces thermocyaneoviloaceus 의 Xylanases를 이용한 자일로올리고당의 생산)

  • 이오석;최충식;최준호;주길재;이인구
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.4
    • /
    • pp.221-226
    • /
    • 2001
  • Streptomyces themocyaneovio-laceus producing the thermostable xylanase was used for the production of xylooligosaccharides from xylan. The optimal conditions for the xylanase production were investigated in jar fermentor, which operated at 2 vvm aera-tion and 400 rpm agitation speed at $50^{\circ}C$ for 24 h. The optimal reaction condtion for the production of xylooli-gosaccharides with xylanases which were prepared by the percipitation with ammonium sulfate were obtained by the reaction at $60^{\circ}C$ for 12 h in the mixture composed of 10% birchwood xylan in 50 mM sodium phosphate buffer (pH 6.0)and 10 unit/ml of xylanase. In this optimal condition for the xylooligosaccharides production the mixture of xylooligosaccharides (58.8 g/I) which were composed of 20.1 g/I of xyobiose, 8.9 g/I of xylotriose 4.5 g/I of xylotetraose 16.2g/I of xylopentaose and 9.1 g/I xylohexaose and 5.0 g/I of xylose was produced from 100 g/I of birchwood xylan by the xylanases of S thermocyaneoviolaceus .

  • PDF

Isolation, Purification, and Characterization of a Thermostable Xylanase from a Novel Strain, Paenibacillus campinasensis G1-1

  • Zheng, Hongchen;liu, Yihan;Liu, Xiaoguang;Wang, Jianling;Han, Ying;Lu, Fuping
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.930-938
    • /
    • 2012
  • High levels of xylanase activity (143.98 IU/ml) produced by the newly isolated Paenibacillus campinasensis G1-1 were detected when it was cultivated in a synthetic medium. A thermostable xylanase, designated XynG1-1, from P. campinasensis G1-1 was purified to homogeneity by Octyl-Sepharose hydrophobic-interaction chromatography, Sephadex G75 gel-filter chromatography, and Q-Sepharose ion-exchange chromatography, consecutively. By multistep purification, the specific activity of XynG1-1 was up to 1,865.5 IU/mg with a 9.1-fold purification. The molecular mass of purified XynG1-1 was about 41.3 kDa as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Sequence analysis revealed that XynG1-1 containing 377 amino acids encoded by 1,134 bp genomic sequences of P. campinasensis G1-1 shared 96% homology with XylX from Paenibacillus campinasensis BL11 and 77%~78% homology with xylanases from Bacillus sp. YA-335 and Bacillus sp. 41M-1, respectively. The activity of XynG1-1 was stimulated by $Ca^{2+}$, $Ba^{2+}$, DTT, and ${\beta}$-mercaptoethanol, but was inhibited by $Ni^{2+}$, $Fe^{2+}$, $Fe^{3+}$, $Zn^{2+}$, SDS, and EDTA. The purified XynG1-1 displayed a greater affinity for birchwood xylan, with an optimal temperature of $60^{\circ}C$ and an optimal pH of 7.5. The fact that XynG1-1 is cellulose-free, thermostable (stability at high temperature of $70^{\circ}C{\sim}80^{\circ}C$), and active over a wide pH range (pH 5.0~9.0) suggests that the enzyme is potentially valuable for various industrial applications, especially for pulp bleaching pretreatment.

Thermostable Xylanase Encoded by xynA of Streptomyces thermocyaneoviolaceus: Cloning, Purification, Characterization and Production of Xylooligosaccharides

  • CHOI JUN-HO;LEE OH-SEUK;SHIN JAE-HO;KWAK YUN-YOUNG;KIM YOUNG-MOG;RHEE IN-KOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.57-63
    • /
    • 2006
  • We have cloned a xylanase gene (xynA) from Streptomyces thermocyaneoviolaceus. The deduced amino acid sequences of the XynA, including the active site sequences of glycosyl hydrolase family 10, showed high sequence homology with several xylanases assigned in this category. The XynA was overexpressed under an IPTG inducible T7 promoter control in E. coli BLR(DE3). The overproduced enzymes were excreted into culture supernatants and periplasmic space. The purified XynA had an apparent molecular mass of near 54 kDa, which corresponds to the molecular mass calculated from its gene. The optimum pH and temperature of the purified XynA were determined to be 5.0 and $65^{\circ}C$, respectively. The XynA retained over $90\%$ its activity after the heat treatment at $65^{\circ}C$ for 30 min. The XynA was highly efficient in producing xylose (X1), xylobiose (X2), xylotriose (X3), and xylotetraose (X4) from xylan.

Cloning, Characterization, and Expression of Xylanase A Gene from Paenibacillus sp. DG-22 in Escherichia coli

  • Lee, Tae-Hyeong;Lim, Pyung-Ok;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • The xynA gene encoding the xylanase A of Paenibacillus sp. DG-22 was isolated with a DNA probe obtained by PCR amplification, using degenerated primers deduced from the amino acid residues of the known N-terminal region of the purified enzyme and the conserved region in the family 11 xylanases. The positive clones were screened on the LB agar plates supplemented with xylan, by the Congo-red staining method. The xynA gene consists of a 630-bp open reading frame encoding a protein of 210 amino acids, and the XynA preprotein contains a 28-residues signal peptide whose cleavage yields a l82-residues mature protein of a calculated molecular weight of 20,000Da and pI value of 8.77. The cloned DNA fragment also has another ORF of 873 nucleotides that showed 76% identity to the putative transcriptional activator of Bacillus halodurans C-125. Most of the xylanase activity was found in the periplasmic space of E. coli. The xynA gene was subcloned into pQE60 expression vector to fuse with six histidine-tag. The recombinant xylanase A was purified by heating and immobilized metal affinity chromatography. The optimum pH and temperature of the purified enzyme were 6.0 and $60^{\circ}C$, respectively. This histidine-tagged xylanase A was less thermostable than the native enzyme.

Identification and Biochemical Characterization of Xylanase-producing Streptomyces glaucescens subsp. WJ-1 Isolated from Soil in Jeju Island, Korea (제주도 토양에서 분리한 xylanase 생산균주 Streptomyces glaucescens subsp. WJ-1의 동정 및 효소의 생화학적 특성 연구)

  • Kim, Da Som;Jung, Sung Cheol;Bae, Chang Hwan;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • A xylan-degrading bacterium (strain WJ-1) was isolated from soil collected from Jeju Island, Republic of Korea. Strain WJ-1 was characterized as a gram-positive, aerobic, and spore-forming bacterium. The predominant fatty acid in this bacterium was anteiso-$C_{15:0}$ (42.99%). A similarity search based on 16S rRNA gene sequences suggested that the strain belonged to the genus Streptomyces. Further, strain WJ-1 shared the highest sequence similarity with the type strains Streptomyces spinoveruucosus NBRC 14228, S. minutiscleroticus NBRC 13000, and S. glaucescens NBRC 12774. Together, they formed a coherent cluster in a phylogenetic tree based on the neighbor-joining algorithm. The DNA G+C content of strain WJ-1 was 74.7 mol%. The level of DNA-DNA relatedness between strain WJ-1 and the closest related species S. glaucescens NBRC 12774 was 85.7%. DNA-DNA hybridization, 16S rRNA gene sequence similarity, and the phenotypic and chemotaxonomic characteristics suggest that strain WJ-1 constitutes a novel subspecies of S. glaucescens. Thus, the strain was designated as S. glaucescens subsp. WJ-1 (Korean Agricultural Culture Collection [KACC] accession number 92086). Additionally, strain WJ-1 secreted thermostable endo-type xylanases that converted xylan to xylooligosaccharides such as xylotriose and xylotetraose. The enzymes exhibited optimal activity at pH 7.0 and $55^{\circ}C$.