Browse > Article

Cloning, Characterization, and Expression of Xylanase A Gene from Paenibacillus sp. DG-22 in Escherichia coli  

Lee, Tae-Hyeong (Department of Biotechnology, Dongguk University)
Lim, Pyung-Ok (Faculty of Science Education, Cheju National University)
Lee, Yong-Eok (Department of Biotechnology, Dongguk University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.1, 2007 , pp. 29-36 More about this Journal
Abstract
The xynA gene encoding the xylanase A of Paenibacillus sp. DG-22 was isolated with a DNA probe obtained by PCR amplification, using degenerated primers deduced from the amino acid residues of the known N-terminal region of the purified enzyme and the conserved region in the family 11 xylanases. The positive clones were screened on the LB agar plates supplemented with xylan, by the Congo-red staining method. The xynA gene consists of a 630-bp open reading frame encoding a protein of 210 amino acids, and the XynA preprotein contains a 28-residues signal peptide whose cleavage yields a l82-residues mature protein of a calculated molecular weight of 20,000Da and pI value of 8.77. The cloned DNA fragment also has another ORF of 873 nucleotides that showed 76% identity to the putative transcriptional activator of Bacillus halodurans C-125. Most of the xylanase activity was found in the periplasmic space of E. coli. The xynA gene was subcloned into pQE60 expression vector to fuse with six histidine-tag. The recombinant xylanase A was purified by heating and immobilized metal affinity chromatography. The optimum pH and temperature of the purified enzyme were 6.0 and $60^{\circ}C$, respectively. This histidine-tagged xylanase A was less thermostable than the native enzyme.
Keywords
Paenibacillus sp. xylanase; cloning; expression; histidine-tag;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 13  (Related Records In Web of Science)
연도 인용수 순위
1 Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402   DOI
2 Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3: 286-290   DOI   ScienceOn
3 Coughlan, M. P. and G. P. Hazelwood. 1993. $\beta$-1,4-D-Xylandegrading enzyme systems: Biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17: 259-289
4 Ito, Y., T. Tomita, N. Roy, A. Nakano, N. Sugawara-Tomita, S. Watanabe, N. Okai, N. Abe, and Y. Kamio. 2003. Cloning, expression, and cell surface localization of Paenibacillus sp. strain W-61 xylanase 5, a multidomain xylanase. Appl. Environ. Microbiol. 69: 6969-6978   DOI   ScienceOn
5 Miyazaki, K., H. Miyamoto, D. K. Mercer, T. Hirase, J. C. Martin, Y. Kojima, and H. J. Flint. 2003. Involvement of the multidomain regulatory protein XynR in positive control of xylanase gene expression in the ruminal anaerobe Prevotella bryantii $B_{1}4$. J. Bacteriol. 185: 2219-2226   DOI   ScienceOn
6 Paice, M. G., R. Bourbonnais, M. Desrochers, L. Jurasek, and M. Yaguchi. 1986. A xylanase gene from Bacillus subtilis: Nucleotide sequence and comparison with B. pumilus gene. Arch. Microbiol. 144: 201-206   DOI
7 Sapag, A., J. Wouters, C. Lambert, P. de. Ioannes, J. Eyzaguirre, and E. Depiereux. 2002. The endoxylanases from family 11: Computer analysis of protein sequences reveals important structural and phylogenetic relationships. J. Biotechnol. 95: 109-131   DOI   ScienceOn
8 Ward, O. P. and M. Moo-Young. 1989. Enzymatic degradation of cell wall and related plant polysaccharides. Crit. Rev. Biotechnol. 8: 237-274   DOI   ScienceOn
9 Nossal, N. G. and L. E. Heppel. 1966. The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J. Biol. Chem. 241: 3055-3062
10 Chang, P., W.-S. Tsai, C.-L. Tsai, and M.-J. Tseng. 2004. Cloning and characterization of two thermostable xylanases from an alkaliphilic Bacillus firmus. Biochem. Biophys. Res. Commun. 319: 1017-1025   DOI   ScienceOn
11 Ko, E. P., H. Akatsuka, H. Moriyama, A. Shiamyo, Y. Hata, Y. Katsube, I. Urabe, and H. Okada. 1992. Site-directed mutagenesis at aspartate and glutamate residues of xylanase from Bacillus pumilus. Biochem. J. 288: 117-121   DOI
12 Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338   DOI
13 Henrissat, B. and A. Bairoch. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781-788   DOI
14 Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: Enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64   DOI   ScienceOn
15 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, U.S.A
16 Lee, H.-J., D.-J. Shin, N. C. Cho, H.-O. Kim, S.-Y. Shin, S.-Y. Im, H. B. Lee, S.-B. Chun, and S. Bai. 2000. Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol. Lett. 22: 387-392   DOI   ScienceOn
17 Lee, Y.-E. 2004. Isolation and characterization of thermostable xylanase-producing Paenibacillus sp. DG-22. Kor. J. Microbiol. Biotechnol. 32: 22-28
18 Lee, Y.-E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG- 22. J. Microbiol. Biotechnol. 14: 1014-1021
19 Heo, S.-Y., J.-K. Kim, Y.-M. Kim, and S.-W. Nam. 2004. Xylan hydrolysis by treatment with endoxylanase and $\beta$- xylosidase expressed in yeast. J. Microbiol. Biotechnol. 14: 171-177
20 Wood, P. J., J. D. Erfle, and R. M. Teather. 1988. Use of complex formation between Congo red and polysaccharide in detection and assay of polysaccharide hydrolases. Methods Enzymol. 160: 59-74   DOI
21 Virupakshi, S., K. G. Babu, and G. R. Naik. 2005. Partial purification and characterization of thermostable alkaline $\beta$-mannanase from Bacillus sp. JB-99 suitable for pulp bleaching. J. Microbiol. Biotechnol. 15: 689-693   과학기술학회마을
22 Yang, R. C. A., C. R. Mackenzie, and S. A. Narang. 1988. Nucleotide sequence of a Bacillus circulans xylanase gene. Nucleic Acids Res. 16: 7187   DOI   ScienceOn
23 Garen, A. and C. Levinthal. 1960. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli: Purification and characterization of alkaline phosphatases. Biochim. Biophys. Acta 38: 470-483   DOI
24 Charles, P. M. Jr, N. Lang, S. F. J. KeGrice, G. Lee, M. Stephens, A. L. Sonenshein, J. Pero, and R. Losick. 1982. Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol. Gen. Genet. 186: 339-346   DOI   ScienceOn
25 Henrissat, B., T. T. Teeri, and R. A. J. Warren. 1998. A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett. 425: 352-354   DOI   ScienceOn
26 Viikari, L., A. J. Kantelinen, G. Sundquist, and M. Linko. 1994. Xylanases in bleaching: From an idea to industry. FEMS Microbiol. Rev. 13: 335-350   DOI   ScienceOn
27 Cho, S.-G. and Y.-J. Choi. 1995. Nucleotide sequence analysis of an endo-xylanase gene (xynA) from Bacillus stearothermophilis. J. Microbiol. Biotechnol. 5: 117-124
28 Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3: 208-218   DOI
29 Takami, H., K. Nakasone, Y. Takaki, G. Maeno, R. Sasaki, N. Masui, F. Fuji, C. Hirama, Y. Nakamura, N. Ogasawara, S. Kuhara, and K. Horikoshi. 2000. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acid Res. 28: 4317-4331   DOI
30 Kubata, K. B., T. Suzuki, H. Horitsu, K. Kawai, and K. Takamizawa. 1992. Xylanase of Aeromonas caviae ME-1 isolated from the intestine of a herbivorous insect (Samia cynthia pryeri). Biosci. Biotechnol. Biochem. 56: 1463- 1464   DOI
31 Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467
32 Trrnen, A. and J. Rouvinen. 1997. Structural and functional properties of low molecular weight endo-1,4-$\beta$-xylanases. J. Biotechnol. 57: 137-149   DOI   ScienceOn