Cloning, Characterization, and Expression of Xylanase A Gene from Paenibacillus sp. DG-22 in Escherichia coli

  • Published : 2007.01.31

Abstract

The xynA gene encoding the xylanase A of Paenibacillus sp. DG-22 was isolated with a DNA probe obtained by PCR amplification, using degenerated primers deduced from the amino acid residues of the known N-terminal region of the purified enzyme and the conserved region in the family 11 xylanases. The positive clones were screened on the LB agar plates supplemented with xylan, by the Congo-red staining method. The xynA gene consists of a 630-bp open reading frame encoding a protein of 210 amino acids, and the XynA preprotein contains a 28-residues signal peptide whose cleavage yields a l82-residues mature protein of a calculated molecular weight of 20,000Da and pI value of 8.77. The cloned DNA fragment also has another ORF of 873 nucleotides that showed 76% identity to the putative transcriptional activator of Bacillus halodurans C-125. Most of the xylanase activity was found in the periplasmic space of E. coli. The xynA gene was subcloned into pQE60 expression vector to fuse with six histidine-tag. The recombinant xylanase A was purified by heating and immobilized metal affinity chromatography. The optimum pH and temperature of the purified enzyme were 6.0 and $60^{\circ}C$, respectively. This histidine-tagged xylanase A was less thermostable than the native enzyme.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338 https://doi.org/10.1007/s002530100704
  3. Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3: 286-290 https://doi.org/10.1016/0167-7799(85)90004-6
  4. Chang, P., W.-S. Tsai, C.-L. Tsai, and M.-J. Tseng. 2004. Cloning and characterization of two thermostable xylanases from an alkaliphilic Bacillus firmus. Biochem. Biophys. Res. Commun. 319: 1017-1025 https://doi.org/10.1016/j.bbrc.2004.05.078
  5. Charles, P. M. Jr, N. Lang, S. F. J. KeGrice, G. Lee, M. Stephens, A. L. Sonenshein, J. Pero, and R. Losick. 1982. Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol. Gen. Genet. 186: 339-346 https://doi.org/10.1007/BF00729452
  6. Cho, S.-G. and Y.-J. Choi. 1995. Nucleotide sequence analysis of an endo-xylanase gene (xynA) from Bacillus stearothermophilis. J. Microbiol. Biotechnol. 5: 117-124
  7. Coughlan, M. P. and G. P. Hazelwood. 1993. $\beta$-1,4-D-Xylandegrading enzyme systems: Biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17: 259-289
  8. Garen, A. and C. Levinthal. 1960. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli: Purification and characterization of alkaline phosphatases. Biochim. Biophys. Acta 38: 470-483 https://doi.org/10.1016/0006-3002(60)91282-8
  9. Henrissat, B. and A. Bairoch. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781-788 https://doi.org/10.1042/bj2930781
  10. Henrissat, B., T. T. Teeri, and R. A. J. Warren. 1998. A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett. 425: 352-354 https://doi.org/10.1016/S0014-5793(98)00265-8
  11. Heo, S.-Y., J.-K. Kim, Y.-M. Kim, and S.-W. Nam. 2004. Xylan hydrolysis by treatment with endoxylanase and $\beta$- xylosidase expressed in yeast. J. Microbiol. Biotechnol. 14: 171-177
  12. Ito, Y., T. Tomita, N. Roy, A. Nakano, N. Sugawara-Tomita, S. Watanabe, N. Okai, N. Abe, and Y. Kamio. 2003. Cloning, expression, and cell surface localization of Paenibacillus sp. strain W-61 xylanase 5, a multidomain xylanase. Appl. Environ. Microbiol. 69: 6969-6978 https://doi.org/10.1128/AEM.69.12.6969-6978.2003
  13. Ko, E. P., H. Akatsuka, H. Moriyama, A. Shiamyo, Y. Hata, Y. Katsube, I. Urabe, and H. Okada. 1992. Site-directed mutagenesis at aspartate and glutamate residues of xylanase from Bacillus pumilus. Biochem. J. 288: 117-121 https://doi.org/10.1042/bj2880117
  14. Kubata, K. B., T. Suzuki, H. Horitsu, K. Kawai, and K. Takamizawa. 1992. Xylanase of Aeromonas caviae ME-1 isolated from the intestine of a herbivorous insect (Samia cynthia pryeri). Biosci. Biotechnol. Biochem. 56: 1463- 1464 https://doi.org/10.1271/bbb.56.1463
  15. Lee, H.-J., D.-J. Shin, N. C. Cho, H.-O. Kim, S.-Y. Shin, S.-Y. Im, H. B. Lee, S.-B. Chun, and S. Bai. 2000. Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol. Lett. 22: 387-392 https://doi.org/10.1023/A:1005676702533
  16. Lee, Y.-E. 2004. Isolation and characterization of thermostable xylanase-producing Paenibacillus sp. DG-22. Kor. J. Microbiol. Biotechnol. 32: 22-28
  17. Lee, Y.-E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG- 22. J. Microbiol. Biotechnol. 14: 1014-1021
  18. Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3: 208-218 https://doi.org/10.1016/S0022-2836(61)80047-8
  19. Miyazaki, K., H. Miyamoto, D. K. Mercer, T. Hirase, J. C. Martin, Y. Kojima, and H. J. Flint. 2003. Involvement of the multidomain regulatory protein XynR in positive control of xylanase gene expression in the ruminal anaerobe Prevotella bryantii $B_{1}4$. J. Bacteriol. 185: 2219-2226 https://doi.org/10.1128/JB.185.7.2219-2226.2003
  20. Nossal, N. G. and L. E. Heppel. 1966. The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J. Biol. Chem. 241: 3055-3062
  21. Paice, M. G., R. Bourbonnais, M. Desrochers, L. Jurasek, and M. Yaguchi. 1986. A xylanase gene from Bacillus subtilis: Nucleotide sequence and comparison with B. pumilus gene. Arch. Microbiol. 144: 201-206 https://doi.org/10.1007/BF00410947
  22. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, U.S.A
  23. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467
  24. Sapag, A., J. Wouters, C. Lambert, P. de. Ioannes, J. Eyzaguirre, and E. Depiereux. 2002. The endoxylanases from family 11: Computer analysis of protein sequences reveals important structural and phylogenetic relationships. J. Biotechnol. 95: 109-131 https://doi.org/10.1016/S0168-1656(02)00002-0
  25. Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: Enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64 https://doi.org/10.1080/07388550290789450
  26. Takami, H., K. Nakasone, Y. Takaki, G. Maeno, R. Sasaki, N. Masui, F. Fuji, C. Hirama, Y. Nakamura, N. Ogasawara, S. Kuhara, and K. Horikoshi. 2000. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acid Res. 28: 4317-4331 https://doi.org/10.1093/nar/28.21.4317
  27. Trrnen, A. and J. Rouvinen. 1997. Structural and functional properties of low molecular weight endo-1,4-$\beta$-xylanases. J. Biotechnol. 57: 137-149 https://doi.org/10.1016/S0168-1656(97)00095-3
  28. Viikari, L., A. J. Kantelinen, G. Sundquist, and M. Linko. 1994. Xylanases in bleaching: From an idea to industry. FEMS Microbiol. Rev. 13: 335-350 https://doi.org/10.1111/j.1574-6976.1994.tb00053.x
  29. Virupakshi, S., K. G. Babu, and G. R. Naik. 2005. Partial purification and characterization of thermostable alkaline $\beta$-mannanase from Bacillus sp. JB-99 suitable for pulp bleaching. J. Microbiol. Biotechnol. 15: 689-693
  30. Ward, O. P. and M. Moo-Young. 1989. Enzymatic degradation of cell wall and related plant polysaccharides. Crit. Rev. Biotechnol. 8: 237-274 https://doi.org/10.3109/07388558909148194
  31. Wood, P. J., J. D. Erfle, and R. M. Teather. 1988. Use of complex formation between Congo red and polysaccharide in detection and assay of polysaccharide hydrolases. Methods Enzymol. 160: 59-74 https://doi.org/10.1016/0076-6879(88)60107-8
  32. Yang, R. C. A., C. R. Mackenzie, and S. A. Narang. 1988. Nucleotide sequence of a Bacillus circulans xylanase gene. Nucleic Acids Res. 16: 7187 https://doi.org/10.1093/nar/16.14.7187