Browse > Article
http://dx.doi.org/10.4014/jmb.1110.10060

Isolation, Purification, and Characterization of a Thermostable Xylanase from a Novel Strain, Paenibacillus campinasensis G1-1  

Zheng, Hongchen (Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China)
liu, Yihan (Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China)
Liu, Xiaoguang (National Engineering Laboratory for Industrial Enzymes (NELIE))
Wang, Jianling (Tianjin Key Laboratory of Industrial Microbiology)
Han, Ying (College of Biotechnology, Tianjin University of Science and Technology)
Lu, Fuping (Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.7, 2012 , pp. 930-938 More about this Journal
Abstract
High levels of xylanase activity (143.98 IU/ml) produced by the newly isolated Paenibacillus campinasensis G1-1 were detected when it was cultivated in a synthetic medium. A thermostable xylanase, designated XynG1-1, from P. campinasensis G1-1 was purified to homogeneity by Octyl-Sepharose hydrophobic-interaction chromatography, Sephadex G75 gel-filter chromatography, and Q-Sepharose ion-exchange chromatography, consecutively. By multistep purification, the specific activity of XynG1-1 was up to 1,865.5 IU/mg with a 9.1-fold purification. The molecular mass of purified XynG1-1 was about 41.3 kDa as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Sequence analysis revealed that XynG1-1 containing 377 amino acids encoded by 1,134 bp genomic sequences of P. campinasensis G1-1 shared 96% homology with XylX from Paenibacillus campinasensis BL11 and 77%~78% homology with xylanases from Bacillus sp. YA-335 and Bacillus sp. 41M-1, respectively. The activity of XynG1-1 was stimulated by $Ca^{2+}$, $Ba^{2+}$, DTT, and ${\beta}$-mercaptoethanol, but was inhibited by $Ni^{2+}$, $Fe^{2+}$, $Fe^{3+}$, $Zn^{2+}$, SDS, and EDTA. The purified XynG1-1 displayed a greater affinity for birchwood xylan, with an optimal temperature of $60^{\circ}C$ and an optimal pH of 7.5. The fact that XynG1-1 is cellulose-free, thermostable (stability at high temperature of $70^{\circ}C{\sim}80^{\circ}C$), and active over a wide pH range (pH 5.0~9.0) suggests that the enzyme is potentially valuable for various industrial applications, especially for pulp bleaching pretreatment.
Keywords
Paenibacillus campinasensis; thermostable xylanase; isolation; purification; characterization;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Suzuki, M. T. and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixture of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625-630.
2 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
3 Techapun, C., N. Poosaran, M. Watanabe, and K. Sasaki. 2003. Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: A review. Process Biochem. 38: 1327-1340.   DOI   ScienceOn
4 Wood, P. J., J. D. Erfle, and R. M. Teather. 1988. Use of complex formation between Congo red and polysaccharide in detection and assay of polysaccharide hydrolases. Meth. Enzymol. 160: 59-74.
5 Zhao, Y., K. Meng, H. Luo, P. Yang, P. Shi, H. Huang, Y. Bai, and B. Yao. 2011. Cloning, expression, and characterization of a new xylanase from alkalophilic Paenibacillus sp. 12-11. J. Microbiol. Biotechnol. 21: 861-868.   DOI   ScienceOn
6 Bailey, M. J., P. Biely, and K. Poutanen. 1992. Laboratory testing of method for assay of xylanase activity. J. Biotechnol. 23: 257-270.   DOI   ScienceOn
7 Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338.   DOI
8 Berg, B., B. V. Hofsten, and G. Pettersson. 1972. Growth and cellulose formation by Cellvibrio fulvus. J. Appl. Bacteriol. 35: 201-214.   DOI
9 Bradford, M. M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
10 Claus, D. and R. C. W. Berkeley. 1986. Genus Bacillus Cohn 1872, $174^{AL}$, pp. 1105-1139. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, Vol. 2. Williams and Wilkins, Baltimore, USA.
11 Collins, T., C. Gerday, and G. Feller. 2005. Xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.   DOI   ScienceOn
12 Ko, C. H., W. L. Chen, C. H. Tsai, W. N. Jane, C. C. Liu, and J. Tu. 2007. Paenibacillus campinasensis BL11: A wood material-utilizing bacterial strain isolated from black liquor. Bioresour. Technol. 98: 2727-2733.   DOI   ScienceOn
13 Jia, Ouyang, Shen Wang, Yan Wang, Xin Li, Mu Chen, Qiang Yong, and Shiyuan Yu. 2011. Production of a Trichoderma reesei QM9414 xylanase in Pichia pastoris and its application in biobleaching of wheat straw pulp. World J. Microbiol. Biotechnol. 27: 751-758.   DOI   ScienceOn
14 Kim, J. M., H. K. Park, D. Y. Yum, B. K. Hahm, D. H. Bai, and J. H. Yu. 1994. Nucleotide sequence of the pectate lyase gene from alkali-tolerant Bacillus sp. YA-14. Biosci. Biotechnol. Biochem. 58: 947-949.   DOI   ScienceOn
15 Knob, A. and E. C. Carmona. 2009. Purification and characterization of two extracellular xylanases from Penicillium sclerotiorum: A novel acidophilic xylanase. Appl. Biochem. Biotechnol. 162: 429-443.
16 Ko, C.-H., C.-H. Tsaia, J. Tu, H.-Y. Lee, L.-T. Kua, P.-A. Kuod, and Y.-K. Lai. 2010. Molecular cloning and characterization of a novel thermostable xylanase from Paenibacillus campinasensis BL11. Process Biochem. 45: 1638-1644.   DOI   ScienceOn
17 Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
18 Maalej, Ines, Ines Belhaj, Najla Fourati Masmoudi, and Hafedh Belghith. 2009. Highly thermostable xylanase of the thermophilic fungus Talaromyces thermophilus: Purification and characterization. Appl. Biochem. Biotechnol. 158: 200-212.   DOI   ScienceOn
19 Menon, Gopalakrishnan, Kalpana Mody, Jitendra Keshri, and Bhavanath Jha. 2010. Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus Strain, GESF-1. Biotechnol. Bioprocess Eng. 15: 998-1005.   DOI   ScienceOn
20 Morag, E., E. A. Bayer, and R. Lamed. 1990. Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes. J. Bacteriol. 172: 6098-6105.
21 Nakamura, S., R. Nakai, K. Namba, T. Kubo, K. Wakabayashi, R. Aono, and K. Horikoshi. 1995. Structure-function relationship of the xylanase from alkaliphilic Bacillus sp. strain 41M-1. Nucleic Acids Symp. 34: 99-100.
22 Pason, Patthra, Akihiko Kosugi, Rattiya Waeonukul, Chakrit Tachaapaikoon, Khanok Ratanakhanokchai, Takamitsu Arai, Yoshinori Murata, Jun Nakajima, and Yutaka Mori. 2010. Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6. Appl. Microbiol. Biotechnol. 85: 573-580.   DOI   ScienceOn
23 Polizeli, M. L., A. C. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591.   DOI   ScienceOn
24 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 3nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
25 Shin, K., M. Jeya, J. K. Lee, and Y. S. Kim. 2010. Purification and characterization of a thermostable xylanase from Fomitopsis pinicola. J. Microbiol. Biotechnol. 20: 1415-1423.   DOI   ScienceOn
26 Soren, Dhananjay, Mohanlal Jana, Subhabrata Sengupta, and Anil K. Ghosh. 2009. Purification and characterization of a low molecular weight endo-xylanase from mushroom Termitomyces clypeatus. Appl. Biochem. Biotechnol. 162: 373-389.
27 Subramaniyan, S. and P. Prema. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183: 1-7.   DOI   ScienceOn