Browse > Article

Purification and Characterization of Two Thermostable Xylanases from Paenibacillus sp. DG-22  

Lee, Yong-Eok (Department of Biotechnology, Dongguk University)
Lim, Pyung-Ok (Division of Molecular and Life Sciences, Pohang University of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.14, no.5, 2004 , pp. 1014-1021 More about this Journal
Abstract
Two thermostable xylanases, designated XynA and XynB, were purified to homogeneity from the culture supernatant of Paenibacillus sp. DG-22 by ion-exchange and gel-filtration chromatography. The molecular masses of xylanases A and B were 20 and 30 kDa, respectively, as determined by SDS-PAGE, and their isoelectric points were 9.1 and 8.9, respectively. Both enzymes had similar pH and temperature optima (pH 5.0-6.5 and $70^{\circ}C$), but their stability at various temperatures differed. Xylanase B was comparatively more stable than xylanase A at higher temperatures. Xylanases A and B differed in their $K_m$ and $V_{max}$ values. XynA had a $K_m$ of 2.0 mg/ml and a $V_{max}$ of 2,553 U/mg, whereas XynB had a K_m$ of 1.2 mg/ml and a $V_{max}$, of 754 U/mg. Both enzymes were endo-acting, as revealed by their hydrolysis product profiles on birchwood xylan, but showed different modes of action. Xylotriose was the major product of XynA activity, whereas XynB produced mainly xylobiose. These enzymes utilized small oligosaccharides such as xylotriose and xylotetraose as substrates, but did not hydrolyzed xylobiose. The amino terminal sequences of XynA and XynB were determined. Xylanase A showed high similarity with low molecular mass xylanases of family 11.
Keywords
Thermostable xylanases; purification; characterization; Paenibacillus sp.;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 16  (Related Records In Web of Science)
연도 인용수 순위
1 Bailey, M. J., P. Biely, and K. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257- 270.
2 Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3: 286- 290.
3 Breccia, J. D., E Sineriz, M. D. Baigori, G. R. Castro, and R. Hatti-Kaul. 1998. Purification and characterization of a thermostable xylanase from Bacillus amyloliquefaciens. Enz. Microb. Technol. 22: 42- 49.
4 Johnvesly, B., S. Virupakshi, G. N. Patil, Ramalingam, and G. R. Naik. 2002. Cellulase-free thermostable alkaline xylanase from thermophilic and alkalophilic Bacillus sp. JB99. J. Microbiol. Biotechnol. 12: 153- 156.
5 Kim, K. C., S.-S. Yoo, Y.-A Oh, and S.-J. Kim. 2003. Isolation and characteristics of Trichoderma harzianum FJl producing cellulase and xylanase. J. Microbiol. Biotechnol. 13: 1- 8.
6 Lee, H.-J., D.-J. Shin, N. C. Cho, H.-O. Kim, S.-Y. Shin, S.-Y. Im, H. B. Lee, S.-B. Chun, and S. Bai. 2000. Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol. Lett. 22: 387- 392.
7 Min, S. Y, B. G. Kim, C. Lee, H.-G. Hur, and J.-H. Ahn. 2002. Purification, characterization, and cDNA cloning of xylanase from fungus Trichoderma strain SY. J. Microbiol. Biotechnol. 12: 890- 894.
8 Paice, M. G., R. Bourbonnais, M. Desrochers, L. Jurasek, and M. Yaguchi. 1986. A xylanase gene from Bacillus subtilis: Nucleotide sequence and comparison with B. pumilus gene. Arch. Microbiol. 144: 201- 206.
9 Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: Enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33- 64.
10 Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler. 1988. Multiplicity of $\beta$-I ,4-xylanase in microorganisms: Function and applications. Microbiol. Rev. 52: 305- 317.
11 Archana, A. and T. Satyanarayana. 2003. Purification and characterization of a cellulase-free xylanase of a moderate thermophile Bacillus licheniformis A99. World J. Microbiol. Biotechnol. 19: 53- 57.
12 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685.   DOI   PUBMED   ScienceOn
13 Belancic, A., J. Scarpa, A. Peirano, R. Diaz, J. Steiner, and J. Eyzaguirre. 1995. Penicillium purpurogenum produces several xylanases: Purification and properties of two of the enzymes. J. Biotecnnol. 41: 71-79.
14 Royer, J. C. and J. P. Nakas. 1991. Purification and characterization of two xylanases from Trichoderma longibrachiatum. Eur. J. Biochem. 202: 521- 529.
15 Okazaki, W., T. Akiba, K. Horikoshi, and R. Akahoshi. 1985. Purification and characterization of xylanases from alkalophilic thermophilic Bacillus spp. Agric. Biol. Chem. 49: 2033- 2039.
16 Panbangred, W., A. Shinmyo, S. Kinoshita, and H. Okada. 1983. Purification and properties of endoxylanase produced by Bacillus pumilus. Agric. Biol. Chem. 47: 957- 963.
17 Dekker, R. E H. and G. N. Richards. 1976. Hemicellulase: Their occurrence, purification, properties, and mode of action. Adv. Carbohydr. Chem. Biochem. 32: 277- 352.
18 Viikari, L., A. Kantelinen, J. Sundquist, and M. Linko. 1994. Xylanases in bleaching: From an idea to the industry. FEMS Microbiol. Rev. 13: 335- 350.
19 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   PUBMED   ScienceOn
20 Khasin, A., I. Alchanati, and Y. Shoham. 1993. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59: 1725-1730.
21 Altschul, S. E, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.
22 Henrissat, B. and A. Bairach. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781- 788.
23 Coughlan, M. P. and G. P. Hazelwood. 1993. $\beta$-l,4-D-Xylandegrading enzyme systems: Biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17: 259- 289.
24 Honda, H., T. Kudo, Y. Ikura, and K. Horikoshi. 1985. Two types of xylanases of alkalophilic Bacillus sp. No. C-125. Can. J. Microbiol. 31: 538- 542.
25 Lee, Y.-E. 2004. Isolation and characterization of thermostable xylanase-producing Paenibacillus sp. DG-22. Kor. J. Microbiol. Biotechnol. 32: 22- 28.
26 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426- 428.   DOI
27 Grabski, A. C. and T. W. Jeffries. 1991. Production, purification and characterization of $\beta$-(l,4)-endoxylanase of Streptomyces roseiscleroticus. Appl. Environ. Microbiol. 57: 987- 992.
28 Balakrishnan, H., B. Kamal Kumar, M. Dutta-Choudhury, and M. V.Rele. 2002. Characterization of alkaline thermoactive cellulase-free xylanases from alkalophilic Bacillus (NCL 87-6-10). J. Biochem. Mol. Biol. Biophys. 6: 325- 334.
29 Takami, H., K. Nakasone, Y. Takaki, G. Maeno, Y. Sasaki, N. Masui, F. Fuji, C. Hirama, Y. Nakamura, N. Ogasawara, S. Kuhara, and K. Horikoshi. 2000. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res. 28: 4317-4331.
30 Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326- 338.
31 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, U.S.A.
32 Christakopoulos, P, D. Kekos, B. J. Macris, M. Claeyssens, and M. K. Bhat. 1996. Purification and characterization of a major xylanase with cellulase and transferase activities from Fusarium oxysporum. Carbohydr. Res. 289: 91- 104.
33 Kubata, K. B., T. Suzuki, H. Horitsu, K. Kawai, and K. Takamizawa. 1992. Xylanase I of Aeromonas caviae MEl isolated from the intestine of a herbivorous insect tSamia cynth is pryeri). Biosci. Biotechnol. Biochem. 56: 1463-1464.
34 Yang, R. C., C. R. MacKenzie, and S. A. Narang. 1988. Nucleotide sequence of a Bacillus circulans xylanase gene. Nucleic Acids Res. 16: 7187.
35 Clarke, J. H., J. E. Rixon, A. Ciruela, H. J. Gilbert, and G. P Hazlewood. 1997. Family-lO and family-ll xylanases differ in their capacity to enhance the bleachability of hardwood and softwood paper pulps. Appl. Microbiol. Biotechnol. 48: 177- 183.
36 Samain, E., P. Debeire, and J. P. Touzel. 1997. High level production of a cellulase-free xylanase in glucose-limited fed batch cultures of a thermophilic Bacillus strain. J. Biotechnol. 58: 71- 78.