DOI QR코드

DOI QR Code

Identification and Biochemical Characterization of Xylanase-producing Streptomyces glaucescens subsp. WJ-1 Isolated from Soil in Jeju Island, Korea

제주도 토양에서 분리한 xylanase 생산균주 Streptomyces glaucescens subsp. WJ-1의 동정 및 효소의 생화학적 특성 연구

  • Kim, Da Som (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Jung, Sung Cheol (Warm-temperature and Subtropical Forest Research Center, Korea Forest Research Institute) ;
  • Bae, Chang Hwan (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Chi, Won-Jae (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources)
  • 김다솜 (국립생물자원관 생물자원활용부 유용자원분석과) ;
  • 정성철 (국립산림과학원 난대.아열대산림연구소) ;
  • 배창환 (국립생물자원관 생물자원활용부 유용자원분석과) ;
  • 지원재 (국립생물자원관 생물자원활용부 유용자원분석과)
  • Received : 2016.11.08
  • Accepted : 2017.01.10
  • Published : 2017.03.28

Abstract

A xylan-degrading bacterium (strain WJ-1) was isolated from soil collected from Jeju Island, Republic of Korea. Strain WJ-1 was characterized as a gram-positive, aerobic, and spore-forming bacterium. The predominant fatty acid in this bacterium was anteiso-$C_{15:0}$ (42.99%). A similarity search based on 16S rRNA gene sequences suggested that the strain belonged to the genus Streptomyces. Further, strain WJ-1 shared the highest sequence similarity with the type strains Streptomyces spinoveruucosus NBRC 14228, S. minutiscleroticus NBRC 13000, and S. glaucescens NBRC 12774. Together, they formed a coherent cluster in a phylogenetic tree based on the neighbor-joining algorithm. The DNA G+C content of strain WJ-1 was 74.7 mol%. The level of DNA-DNA relatedness between strain WJ-1 and the closest related species S. glaucescens NBRC 12774 was 85.7%. DNA-DNA hybridization, 16S rRNA gene sequence similarity, and the phenotypic and chemotaxonomic characteristics suggest that strain WJ-1 constitutes a novel subspecies of S. glaucescens. Thus, the strain was designated as S. glaucescens subsp. WJ-1 (Korean Agricultural Culture Collection [KACC] accession number 92086). Additionally, strain WJ-1 secreted thermostable endo-type xylanases that converted xylan to xylooligosaccharides such as xylotriose and xylotetraose. The enzymes exhibited optimal activity at pH 7.0 and $55^{\circ}C$.

본 연구로부터 WJ-1 균주는 제주도에서 수집된 토양샘플로부터 동정되었는데, 형태분화관찰 및 16S rRNA 유전자 염기서열분석과 DNA-DNA hybridization 분석을 통하여 S. glaucescens의 신아종으로 분류되었다. 균주 WJ-1의 주요 cellular fatty acid와 게놈내 G+C 농도는 각각 $C_{15:0}$ anteiso (42.99%)와 74.73 mol%였다. 이 균은 배양액으로부터 준비된 조효소액의 xylanase 활성은 중성 pH 조건 및 $55^{\circ}C$에서 활성이 가장 높았다. S. glaucescens의 조효소액을 이용하여 xylan으로부터 xylotriose 및 xylotetraose를 포함하는 xylooligosaccharide를 제조할 수 있다. 본 연구는 S. glaucescens의 아종에 관한 최초의 보고이며, 관련 종에서 xylanase 활성에 관한 최초의 보고이다. 본 연구 결과로부터, WJ-1 균주는 lignocellulosic biomass의 이용 및 기능성 xylooligosacchade 생산에 유용하게 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Subramaniyan S, Prema P. 2002. Biotechnology of microbial xylanases: Enzyology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64. https://doi.org/10.1080/07388550290789450
  2. Beg QK, Kapoor M, Mahajan L, Hoondal GS. 2001. Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56: 326-338. https://doi.org/10.1007/s002530100704
  3. Bajaj BK, Singh NP. 2010. Production of xylanase from an alkalitolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization. Appl. Biochem. Biotechnol. 162: 1804-1818. https://doi.org/10.1007/s12010-010-8960-x
  4. Collins T, Gerday C, Feller G. 2005. Xylanases, xylanase families and extremophile xlanases. 2005. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
  5. Kieser H, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces genetics. The John Innes Foundation, Norwich, United Kingdom.
  6. Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55: 541-555. https://doi.org/10.1016/j.mimet.2003.08.009
  7. Chun J, Lee JH, Jung YY, Kim MJ, Kim SI, Kim BK, et al. 2007. ExTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  8. Thomson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  9. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
  10. Felsenstein J. 1993. PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seatle, USA.
  11. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  12. Kluge AG, Farris FS. 1969. Quantative phyletics and the evolution of anurans. Syst. Zool. 18: 1-32. https://doi.org/10.2307/2412407
  13. Kimura M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK.
  14. Miller L, Berger T. 1985. Bacterial identification by gas chromatography of whole cell fatty acid. Hewlett-Packard Application note. pp. 228-241.
  15. Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc., Newark, DE, USA.
  16. Mesbah M, Premachandran U, Whitman WB. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by highperformance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167. https://doi.org/10.1099/00207713-39-2-159
  17. Komagata K, Suzuki K. 1987. Lipid and cell-wall analysis in bacterial systematic. Methods Microbiol. 19: 161-207.
  18. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  19. Van Trappen S, Tan TL, Yang J, Mergaert J, Swings J. 2004. Altermonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Altermonas. Int. J. Syst. Evol. Microbiol. 54: 1157-1163. https://doi.org/10.1099/ijs.0.02862-0
  20. Pridham, TG, Hesseltine CW, Benedict RG. 1958. A guide for the classification of Streptomycetes according to selected groups; placement of strains in morphological sections. Appl. Microbiol. 6: 52-79.
  21. Virupakshi S, Babu KG, Gaikwad SR, Naik GR. 2005. Production of a xylanolytic enzyme by a thermoalkaliphilic Bacillus sp. JB-99 in solid state fermentation. Proc. Biochem. 40: 431-435. https://doi.org/10.1016/j.procbio.2004.01.027
  22. Miyazono K, Tabei N, Morita S, Ohnishi Y, Horinouchi S, Tanokura M. 2012. Substrate recognition mechanism and substratedependent conformational changes of an ROK family glucokinase from Streptomyces griseus. J. Bacteriol. 194: 607-616. https://doi.org/10.1128/JB.06173-11
  23. Angell S, Lewis CG, Buttner MJ, Bibb MJ. 1994. Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol. Gen. Genet. 244: 135-143.
  24. Georis J, Giannotta F, Buyl ED, Granier B, Frere JM. 2000. Purification and properties of three endo-${\beta}$-1,4-xylanases produced by Streptomyces sp. strain S38 which differ in their ability to enhance the bleaching of kraft pulps. Enz. Microbial. Technol. 26: 178-186. https://doi.org/10.1016/S0141-0229(99)00141-6
  25. Ninawe S, Kapoor M, Kuhad RC. 2008. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresour. Technol. 99: 1252-1258. https://doi.org/10.1016/j.biortech.2007.02.016
  26. Wang SL, Yen YH, Shih IL, Chang AC, Chang WT, Wu WC, et al. 2003. Production of xylanases from rice bran by Streptomyces actuosus A-151. Enz. Microbial Technol. 33: 917-925. https://doi.org/10.1016/S0141-0229(03)00246-1
  27. Zhang J, Matti SA, Terhi P, Ming T, Maija T, Liisa V. 2011. Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnol. Biofuels 4: 12-25. https://doi.org/10.1186/1754-6834-4-12