• Title/Summary/Keyword: Thermophilic microorganisms

Search Result 42, Processing Time 0.025 seconds

Microbiological Evaluation of Antibiotic Resistance and Pathgoenicity in Autothermal Thermophilic Aerobic Digestion Treated Swine Manure

  • Han Il;Congeevaram Shankar;Gi Dong-Won;Park Jun-Hong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.119-122
    • /
    • 2006
  • In both untreated and conventionally stabilized swine manures antibiotic resistant (AR) microorganisms, Staphylococcus-like and Salmonella-like microorganisms were detected. Also pathogens with MAR phynotype were detected. Presence of such microorganisms suggest high level of pathogen-related health risk to farmers who may be in direct contact with the manure and its conventionally stabilized product In contrast the autothermal thermophilic aerobic digestion (ATAD) treatment have efficiently reduced AR and pathogenicity from the swine manure. When soil was fertilized using swine manure and its stabilized products, despite no detection of MAR-exhibiting pathogen-like microorganisms in fertilized soil, potential pathogen-related health risk could not be ruled out from the fertilized soil since the organic fertilization led to increase in AR and pathogenicity in the soil microbial communities. As conclusion, this microbiological study demonstrated that an ATAD process is applicable in control of pathogen-related health risk in livestock manure.

  • PDF

Inactivation of Pathogenic Bacteria by Addition of Thermophilic Bacteria in the Thermophilic Aerobic Oxidation(TAO) System (고온호기산화장치의 고온미생물 첨가에 의한 병원성 미생물의 불활성화)

  • Lee W. I.;H. Tsujii;T. Maki;Lee M. G.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.2
    • /
    • pp.111-118
    • /
    • 2004
  • This study analyzed temperature increase, microorganism changes, and inactivation of pathogenic microorganisms in pig slurry when treated with thermophilic microorganisms in Thermophilic Aerobic Oxidation(TAO) system. An amount of $6 m^3$ of pig slurry was treated in an $18 m^3(3.0\times2.5\times2.4 m)$ reactor for 5 to 7 days in two groups: the control of pig slurry only and the treatment of pig slurry with 6 liters of thermophilic microorganism(Bacillus sp.). To study the microorganism changes in the reactor, the populations of aerobic mesophilic microorganisms, thermophilic microorganisms and general pathogens were analyzed. To study the inactivation of pathogenic microorganisms, the levels of E. coli, Salmonella sp, Crytosporidium parvum and Giardia lamblia were analyzed. The temperature inside the reactor ranged from 18 to $62^{\circ}C$ for the control while far the treatment group it ranged from 18 to $66^{\circ}C$, showing a slightly higher array. With regard to changes in microorganisms, both mesophilic and thermophilic organisms decreased from $3.1\times10^6$ to $1.2\times10^2$ CFU/ml and from $1.0\times10^4$ to $8.0\times10^1$ CFU/ml, respectively, in the control. In the treatment, on the other hand, mesophilic organisms decreased from $3.0\times10^8$ CFU/ml to $8.6\times10^5$ CFU/ml while thermophilic organisms increased sharply from $2.0\times10^6$ to $1.2\times10^8$ CFU/ml. For pathogens, Salmonella and Giardia were not detected either before or after the treatment, while E. coli and C. parvum were found to be $10^5$ CFU/ml each before treatment and negative after it. From this experiment, it was concluded that thermophilic microorganisms could effectively sanitize liquid compost by generating high temperature in the TAO system, which in turn would inhibit the growth of pathogenic organisms.

  • PDF

Aeration Control of Thermophilic Aerobic Digestion Using Fluorescence Monitoring

  • Kim, Young-Kee;Oh, Byung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.93-98
    • /
    • 2009
  • The thermophilic aerobic digestion (TAD) process is recognized as an effective method for rapid waste activated sludge (WAS) degradation and the deactivation of pathogenic microorganisms. Yet, high energy costs due to heating and aeration have limited the commercialization of economical TAD processes. Previous research on autothermal thermophilic aerobic digestion (ATAD) has already reduced the heating cost. However, only a few studies have focused on reducing the aeration cost. Therefore, this study applied a two-step aeration control strategy to a fill-and-draw mode semicontinuous TAD process. The NADH-dependent fluorescence was monitored throughout the TAD experiment, and the aeration rate shifted according to the fluorescence intensity. As a result, the simple two-step aeration control operation achieved a 20.3% reduction in the total aeration, while maintaining an effective and stable operation. It is also expected that more savings can be achieved with a further reduction of the lower aeration rate or multisegmentation of the aeration rate.

A Study on the Composting Process of Food Waste by Seeding the Isolated Effective Microorganism (음식폐기물 퇴비화에서 유효 미생물 분리 및 첨가에 관한 연구)

  • 이장훈;정준오;박승호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.1-10
    • /
    • 2000
  • Although microorganisms play an important role in composting process, researches on the effective microorganism (EM) in composting process are rarely reported. In this study, three stages of work performed 1) investigation of composting facility 2) sample collection and isolation of the EM 3) lab-scale composting by seeding the isolated EM. For this, purpose, physical, chemical, and biological characteristics, such as temperature, moisture content, organic matter, pH population of microorganism, etc., were investigated during the process and the results were compared with those of a control(non-seeded). In the composting facility, the most active degradation of food waste was suppsed to occur in 10-11th day of composting by observing the temperature and CO2 emission. The population of bacterial and fungi was highest in thermophilic stage. Meanwhile that of actinomycetes and yeast was relatively uniform during the process. In the lab-scale test, the thermophilic stage was maintained longer(more than 9 days in 17 days of experiment) in the seeded which was favored for the high reduction of organic matter and moisture. Reduction rates of lipids and salinity were also increased in the seeded. It confirmed these results that the population of microorganisms in the seeded was observed higher in several orders than the control. However, pH of the seeded was maintained as low as about 4.5 throughout the experiment except the final period of the process. Meanwhile, pH of the control rose in the early stage of the experiment. This was probably due that the seeded microorganisms collected from the composting facility was adapted to the low pH environment.

  • PDF

Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals abundance and spatial organization of methanogens in thermophilic sludge granules

  • Lee, Yu-Jin;Kim, Hyo-Seop;An, Yeong-Hui;Park, Seong-Hun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.508-511
    • /
    • 2000
  • In situ hybridization with fluorescent oligonucleotides(FISH) was used to detect and localize microorganisms in the granules of lab-scale upflow anaerobic sludge blanket(UASB) reactors. An UASB reactor was seeded with mesophilically-grown($35^{\circ}\;C$) granular sludge, and thermophilically($55^{\circ}\;C$) operated by feeding with a synthetic wastewater. Sections of the granules were hybridized with 16S rRNA-targeted oligonucleotide probes for Eubacteria, Archaeabacteria, and specific phylogenetic groups of methanogens. FISH clearly showed the layed structure of thermophilic granules, which was consisted of outer bacterial cells and inner archaeal cells. Methanoseata-, Methanosarcina-like cells were also found to be localized inside the granules. These results demonstrated FISH was useful in studying the spatial organizations of methanogens and in situ morphologies and metabolic functions in thermophilic granular sludges.

  • PDF

Effect of Coal Fly Ash on Changes of Microbial Flora during the Household Garbage Composting (수분조절제로 석탄회를 첨가한 음식쓰레기 퇴비화과정 중 미생물상의 변동)

  • Seong, Soon-Hee;Kim, Woo-Sung;Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.291-294
    • /
    • 1997
  • The purpose of this study was to investigate the change of microbial flora of using coal fly ash as humidity conditioner during the household garbage composting.The summarized results of microbial flora were as follows:There was no difference of t he seasonal fluctuation of mesophilic and themophilic microorganisms.The population of thermophilic actinomycetes was rapidly increased in winter,but not much changed in spring and summer.Thermophilic and mesophilic fungal flora were increased at the same time,but the population of thermophilic fungal flora was smaller than that of mesophilic. The population of bacteria, actinomycestes and fungi showed not much difference.

  • PDF

Characteristics and Distribution of Microorganisms in a Rice Straw Compost for Cultivation of Button Mushrooms (Agaricus bisporus) (양송이 재배에서 볏짚 배지의 발효 단계별 관여 미생물의 분포양상 및 특성)

  • Lee, Chan-Jung;Yoo, Young-Mi;Moon, Ji-Won;Cheong, Jong-Chun;Kong, Won-Sik;Kim, Yong-Gyun;Lee, Byung-Eui;Yoon, Min-Ho;Sa, Tong-min
    • The Korean Journal of Mycology
    • /
    • v.45 no.1
    • /
    • pp.43-53
    • /
    • 2017
  • In this study, we analyzed the densities and taxonomic characteristics of various microorganisms that play important roles in Agaricus bisporus culture medium composting, and examined changes in the levels of decomposition-related enzymes secreted by these microorganisms. Various microorganisms such as thermophilic bacteria, actinomycetes, fluorescent Pseudomonas spp., and filamentous bacteria are closely associated with culture medium composts of Agaricus bisporus. The population densities of microorganisms change, and harmful bacteria disappear during thermophilic composting. Psychrobacter sp., Pseudomonas sp., Bacillus sp., and Pseudoxanthomonas sp. accounted for the highest proportion of bacteria in the culture media during outdoor composting, whereas Bacillus sp. and Psychrobacillus sp. were dominant after pasteurization. Cellulose and hemicellulose enzymes of the microorganisms were important at an early stage of rice straw composting and after decomposition of carbon sources, respectively. Microorganisms that secreted these enzymes were present in the second and third turning stage of composting.

High Production of Thermostable Beta-galactosidase of Bacillus stearothemophilus in mesophiles

  • Okada, Hirosuke;Hirata, Haruhisa;Negoro, Seiji
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.509.1-509
    • /
    • 1986
  • Recent advances in recombinant DNA techniques have provided a tool for breeding of microorganisms of hyper production. Enzyme production by cloned microorganism has some advantages. They are ⅰ) Enzymes can be produced by a microorganism easily cultured ⅱ) Hyper production. ⅲ) In some cases, such as thermophilic enzyme gene is cloned in a mesophilic bacteria, the enzyme purification procedure can be simplified. One example, production of thermophilic ${\beta}$-galactosidase in B. subtilis will be presented. Bacillus stearothermophilus IAM 11001 produced three ${\beta}$-galactosidases, ${\beta}$-galactosidase I, II and III (${\beta}$-gal-I, II and III). By connecting restriction fragments of the chromosomal DNA to plasmid vector, followed by transformation of Escherichia coli, two ${\beta}$-galactosidase genes (bgaA and bgaB) located close to each other on the chromosome were cloned.

  • PDF

Treatment of Distillery Wastewater Using a Thermophilic High-Rate Hybrid Anaerobic Reactor in Industrial Scale

  • Nam, Ki-Du;Chung, In;Young, James C.;Park, Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.737-743
    • /
    • 1999
  • A conventional thermophilic anaerobic digester was converted into a thermophilic high-rate hybrid anaerobic reactor (THAR) for treating distillery wastewater. The THAR has been operating successfully since May 1995 at a loading rate of 5.45 to $11.52{\;}kg/\textrm{m}^3/d$ (maximum of 15.02). The THAR has demonstrated a soluble Chemical Oxygen Demand (sCOD) removal efficiency of 85 to 91% and a total COD (tCOD) removal efficiency of as much as 72 to 84%. Product gas had a methane content of 59 to 68%. The tCOD removal rates were 4.31 to 5.43, 6.26 to 6.89, and 9.03 to $9.78kg{\;}tCOD/\textrm{m}^3/d$ for tapioca, com, and naked-barley wastewater, respectively. The sCOD removal rates ranged from 3.75 to 4.79,3.28 to 4.89, and 5.57 to 6.21kg $sCOD/\textrm{m}^3/d$ for tapioca, com, and naked-barley wastewater, respectively. There were unknown substances in a naked-barley distillery wastewater that were identified as being toxic for microorganisms. However, the THAR treated naked-barley wastewater continuously for 26 days, operating at an average tCOD loading of $11.08{\;}kg/\textrm{m}^3/d$without any signs of deterioration in either COD removal efficiency or gas production rate. During this period, the average removal efficiencies of tCOD and sCOD were 84% and 91%, respectively, and the gas production rate averaged 6.61 to $7.57{\;}\textrm{m}^3/\textrm{m}^3$ reactor/d which produced 0.57 to $0.69{\;}\textrm{m}^3{\;}biogas/kg{\;}tCOD_{rem}$. From tapioca and com wastewater, the reactor showed an average gas production rate of 3.18 to 3.46 and 4.91 to $5.22{\;}\textrm{m}^3/\textrm{m}^3$ reactor/d which produced 0.53 to 0.69 and 0.62 to $0.71{\;}\textrm{m}^3/kg{\;}tCOD_{rem}$, respectively.

  • PDF

Construction of Microbial Fuel Cells Using Thermophilic Microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius

  • Choi, Young-Jin;Jung, Eun-Kyoung;Park, Hyun-Joo;Paik, Seung R.;Jung, Seun-Ho;Kim, Sung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.813-818
    • /
    • 2004
  • A systematic study of microbial fuel cells comprised of thermophilic Bacillus licheniformis and Bacillus thermoglucosidasius has been carried out under various operating conditions. Substantial amount of electricity was generated when a redox mediator was used. Being affected by operation temperature, the maximum efficiency was obtained at 50$^{\circ}C$ with an open circuit voltage of ca. 0.7 V. While a small change around the optimum temperature did not make much effect on the cell performance, the rapid decrease in performance was observed above 70$^{\circ}C$. It was noticeable that fuel cell efficiency and discharge pattern strongly depended on the kind of carbon sources used in the initial culture medium. In the case of B. thermoglucosidasius, glucose alone was utilized constitutively as a substrate in the microbial fuel cell irrespective of used carbons sources. When B. licheniformis was cultivated with lactose as a carbon source, best charging characteristics were recorded. Trehalose, in particular, showed 41.2% coulombic efficiency when B. thermoglucosidasius was cultured in a starch-containing medium. Relatively good repetitive operation was possible with B. thermoglucosidasius cells up to 12 cycles using glucose as a carbon source, when they were cultured with lactose as an initial carbon source. This study demonstrates that highly efficient thermophilic microbial fuel cells can be constructed by a pertinent modulation of the operating conditions and by carefully selecting carbon sources used in the initial culture medium.