High Production of Thermostable Beta-galactosidase of *Bacillus stea ro thermophilus* in mesophiles

Hirosuke Okada, Haruhisa Hirata and Seiji Negoro
Department of Fermentation Technology, Osaka University, Yamada-oka, Suita-shi, Osaka 565, Japan.

Recent advances in recombinant DNA techniques have provided a tool for breeding of microorganisms of hyper production. Enzyme production by cloned microorganism has some advantages. They are i) Enzymes can be produced by a microorganism easily cultured ii) Hyper production. iii) In some cases, such as therophilic enzyme gene is cloned in a mesophilic bacteria, the enzyme purification procedure can be simplified. One example, production of thermophilic beta-galactosidase in *B. subtilis* will be presented.

*Bacillus stea ro thermophilus* IAM11001 produced three beta-galactosidases, beta-galactosidase I, II and III (beta-gal-I, II and III). By connecting restriction fragments of the chromosomal DNA to plasmid vector, followed by transformation of *Escherichia coli*, two beta-galactosidase genes (*bgaA* and *bgaB*) located close to each other on the chromosome were cloned.

By recloning the gene of beta-gal-I into *B. subtilis* using pUB110, the enzyme production was enhanced 40 times. *B. subtilis* (pHG5) produced gamma-gal-I about 6% of the total parrotein in the cell extract while *B. stea ro thermophilus* produced the enzyme at 0.15% of total protein or 10% of the total beta-galactosidase activity. As most of proteins of *B. subtilis* can be denatured at 70°C this enzyme could be purified to 80% homogeneity by incubating the cell extract of *B. subtilis* at 70°C for 15 min followed by centrifugation off the denatured proteins. The DNA sequence of bgaB gene and its flanking regions were determined. From the results, it has a typical promoter useful for x55 of RNA-polymerase of *B. subtilis*, TATAAT for -10 region and TTGACA for -35 region in addition to the strong S.D. sequence. From the advantages of the enzyme characteristics, heat stability, low Km for lactose, relatively high Ki value for galactose, high production and easy purification, this enzyme is suitable for industrial use.

Factos affecting the production of butanol and acetone by *Clostridium acetobutylicum*

G. Gottschalk, Institut fur Mikrobiologie, Universitat Gottingen, Federal Republic of Germany

Owing to the growing interest in the production of fuels and chemicals from biomass, the well-known butanol-acetone fermentation as carried out by *Clostridium acetobutylicum* has been intensely studied again in recent years. Several solvent-yielding fermentation processes were established which are operated by using batch cultures or continuous cultures. I could be shown that under conditions of phosphate limitation an asporogenous mutant of *C. acetobutylicum* establishes itself in a chemostat which produces the solvents continuously. Attempts have been made to change the butanol/acetone ratio in favor of butanol production.

A corresponding shift of the product spectrum can be achieved by carbon monoxide addition to the head space of the fermentation (B.H. Kim et al., App. Environ. Microbiol. 48, 764-770, 1984) or by iron limitation.

Progress has been made in understanding the mechanism underlying the shift from acid to solvent production. Experimental results are in agreement with the view that intracellular accumulation of acetic and butyric acid results in a shortage of phosphate and coenzyme A. This shortage may serve then as signal for the synthesis of the enzymes involved in the formation of acetone and butanol.