Browse > Article
http://dx.doi.org/10.5012/bkcs.2004.25.6.813

Construction of Microbial Fuel Cells Using Thermophilic Microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius  

Choi, Young-Jin (Department of Microbial Engineering & Bio/Molecular Informatics Center, Konkuk University)
Jung, Eun-Kyoung (Department of Microbial Engineering & Bio/Molecular Informatics Center, Konkuk University)
Park, Hyun-Joo (Department of Microbial Engineering & Bio/Molecular Informatics Center, Konkuk University)
Paik, Seung R. (School of Chemical Engineering, College of Engineering, Seoul National University)
Jung, Seun-Ho (Department of Microbial Engineering & Bio/Molecular Informatics Center, Konkuk University)
Kim, Sung-Hyun (Department of Microbial Engineering & Bio/Molecular Informatics Center, Konkuk University)
Publication Information
Abstract
A systematic study of microbial fuel cells comprised of thermophilic Bacillus licheniformis and Bacillus thermoglucosidasius has been carried out under various operating conditions. Substantial amount of electricity was generated when a redox mediator was used. Being affected by operation temperature, the maximum efficiency was obtained at 50$^{\circ}C$ with an open circuit voltage of ca. 0.7 V. While a small change around the optimum temperature did not make much effect on the cell performance, the rapid decrease in performance was observed above 70$^{\circ}C$. It was noticeable that fuel cell efficiency and discharge pattern strongly depended on the kind of carbon sources used in the initial culture medium. In the case of B. thermoglucosidasius, glucose alone was utilized constitutively as a substrate in the microbial fuel cell irrespective of used carbons sources. When B. licheniformis was cultivated with lactose as a carbon source, best charging characteristics were recorded. Trehalose, in particular, showed 41.2% coulombic efficiency when B. thermoglucosidasius was cultured in a starch-containing medium. Relatively good repetitive operation was possible with B. thermoglucosidasius cells up to 12 cycles using glucose as a carbon source, when they were cultured with lactose as an initial carbon source. This study demonstrates that highly efficient thermophilic microbial fuel cells can be constructed by a pertinent modulation of the operating conditions and by carefully selecting carbon sources used in the initial culture medium.
Keywords
Coulombic efficiency; Microbial fuel cell; Thermophilic microorganism;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 18  (Related Records In Web of Science)
Times Cited By SCOPUS : 18
연도 인용수 순위
1 Wingard, L. B. Jr.; Shaw, C. H.; Castner, J. F. Enzyme Microb.Technol. 1982, 4, 137.   DOI   ScienceOn
2 Fee, J. A.; Kuila, D.; Mather, M. W.; Yoshida, T. Biochimica etBiophysica Acta 1986, 853, 153.   DOI   ScienceOn
3 Bennetto, H. P.; Dew, M. E.; Striling, J. L.; Tanaka, K. Chem.Indust. 1981, 7, 776.
4 Choi, Y.; Kim, N.; Kim, S.; Jung, S. Bull. Korean Chem. Soc.2003, 24, 437.   DOI   ScienceOn
5 Tangney, M.; Tate, J. E.; Priest, F. G.; Mitchell, W. J. Appl.Environ. Microbiol. 1996, 62, 732.
6 Kim, N.; Choi, Y.; Jung, S.; Kim, S. Biotechnol. Bioeng. 2000, 70,109.   DOI   ScienceOn
7 Bennetto, H. P.; Stirling, J. L.; Tanaka, K.; Vega, C. A. Biotechnol.Bioeng. 1983, 25, 559.   DOI   ScienceOn
8 Delaney, G. M.; Bennetto, H. P.; Mason, J. R.; Roller, S. D.;Stirling, J. L.; Thurston, C. F. J. Chem. Tech. Biotechnol. 1984,34B, 13.
9 Haki, G. D.; Rakshit, S. K. Bioresource Technology 2003, 89, 17.   DOI   ScienceOn
10 Bennetto, H. P.; Stirling, J. L. Chem. Indust. 1985, 21, 695.
11 Tanaka, K.; Kashiwagi, N.; Ogawa, T. J. Chem. Tech. Biotechnol. 1988, 42, 235.
12 Kim, N.; Choi, Y.; Jung, S.; Kim, S. Bull. Korean Chem. Soc.2000, 21, 44.
13 Videla, H. A.; Arvia, A. J. Biotechnol. Bioeng. 1975, 17, 1529.   DOI   ScienceOn
14 Choi, Y.; Song, J.; Jung, S.; Kim, S. J. Microbiol. Biotechnol.2001, 11, 863.
15 Kim, H. J.; Hyun, M. S.; Chang, I. S.; Kim, B. H. J. Microbiol.Biotechnol. 1999, 9, 365.
16 Tangney, M.; Priest, F. G.; Mitchell, W. J. J. Bact. 1993, 175,2137.
17 Yagishita, T.; Horigome, T.; Tanaka, K. J. Chem. Tech. Biotechnol.1993, 56, 393.
18 Thurston, C. F.; Bennetto, H. P.; Delaney, G. M.; Mason, J. R.;Roller, S. D.; Stirling, J. L. J. Gen. Microbiol. 1985, 131, 1393.
19 Allen, R. M.; Bennetto, H. P. Appl. Biochem. Biotechnol. 1993,39, 27.   DOI
20 Turner, A. P. F.; Aston, W. J.; Higgins, I. J.; Davis, G.; Hill, H. A. O. Biotechnol. Bioeng. Symp. 1982, 12, 401.