• Title/Summary/Keyword: Thermal evolution

Search Result 356, Processing Time 0.025 seconds

Analyzing the Evolution of Summer Thermal Anomalies in Busan Using Remote Sensing and Spatial Statistical Tool

  • Njungwi, Nkwain Wilfred;Lee, Daeun;Kim, Minji;Jin, Cheonggil;Choi, Chuluong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.665-685
    • /
    • 2021
  • This study focused on the a 20-year evaluation of the dynamism of critical thermal anomalies in Busan metropolitan area prompted by unusual infrastructural development and demographic growth rate. Archived Landsat thermal data derived-LST was the major input for UTFVI and hot spot analysis (Getis-Ord Gi*). Results revealed that the surface urban heat island-affected area has gradually expanded overtime from 23.32% to 32.36%; while the critical positive thermal anomalies (level-3 hotspots) have also spatially increased from 19.88% in 2000 to 23.56% in 2020, recording a net LST difference of > 5℃ between the maximum level-3 hotspot and minimum level-3 coldspot each year. It is been observed that thermal conditions of Busan have gradually deteriorated with time, which is potentially inherent in the rate of urban expansion. Thus, this work serves as an eye-opener to powers that be, to think and act constructively towards a sustainable thermal conform for city dwellers.

Highly Active Electrocatalyst based on Ultra-low Loading of Ruthenium Supported on Titanium Carbide for Alkaline Hydrogen Evolution Reaction

  • Junghwan, Kim;Sang-Mun, Jung;Kyu-Su, Kim;Sang-Hoon, You;Byung-Jo, Lee;Yong-Tae, Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.417-423
    • /
    • 2022
  • With the emerging importance of catalysts for water electrolysis, developing efficient and inexpensive electrocatalysts for water electrolysis plays a vital role in renewable hydrogen energy technology. In this study, a 1nm thickness of TiC-supported Ru catalyst for hydrogen evolution reaction (HER) has been successfully fabricated using an electron (E)-beam evaporator and thermal decomposition of gaseous CH4 in a furnace. The prepared Ru/TiC catalyst exhibited an outstanding performance for alkaline hydrogen evolution reaction with an overpotential of 55 mV at 10 mA cm-2. Furthermore, we demonstrated that the outstanding HER performance of Ru/TiC was attributed to the high surface area of the support and the metal-support interaction.

CENTRALLY PEAKED X-RAY SNRS : CLOUD EVAPORATION AND THERMAL CONDUCTION (X-선 중심 가광 초신성 잔해 : 성간운 증발과 열전도 모델)

  • CHOE SEUNG-URN;JUNG HYUN-CHUL;PARK BYEONG-GEON
    • Publications of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.69-78
    • /
    • 1999
  • We present the results of one-dimensional numerical simulations of SNR evolution in the in­homogeneous medium considering the effects of the evaporation of the cloud and the thermal conduction. We have included the effects of changing evaporation rate as a function of cloud size and the ambient temperature so that the clouds could be evaporated completely before they reach the center of the SNR. The heat conduction markedly changes the density distribution in the remnant interior. To explain the observed morphologies of the centrally peaked X-ray SNRs(for example W44), the maximal thermal conduction is required. However, this is unlikely due to the magnetic field and the turbulent motion. The effects of the evaporation of the cloud and the thermal conduction described here may explain the class of remnants observed to have centrally peaked X-ray emmision.

  • PDF

Numerical Study on the Effect of Exhaust Flow Pattern under Real Running Condition on the Performance and Reliability of Closed-Coupled Catalyst (실 운전조건에서의 배기유동패턴이 근접장착 촉매변환기의 성능 및 신뢰성에 미치는 영향에 관한 수치적 연구)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.54-61
    • /
    • 2004
  • The engine-out flow is highly transient and hot, and may place tremendous thermal and inertial loads on a closed-coupled catalyst. Therefore, time-dependent and detailed flow and thermal field simulation may be crucial. The aim of this study is to develop combined chemical reaction and multi-dimensional fluid dynamic mathematical model and to study the effect of unsteady pulsating thermal and flow characteristics on thermal reliability of closed-coupled catalyst. The effect of cell density on the conversion performance under real running condition is also investigated. Unlike previous studies, the present study focuses on coupling between the problems of pulsating flow pattern and catalyst thermal response and conversion efficiency. The results are expressed in terms of temporal evolution of flow, pollutant and temperature distribution as well as transient characteristics of conversion efficiency. Fundamental understanding of the flow and thermal phenomena of closed-coupled catalyst under real running condition is presented. It is shown that instants of significantly low values of flow uniformity and conversion efficiency exist during exhaust blowdown and the temporal varaition of flow uniformity is very similar in pattern to one of conversion efficiency. It is also found that the location of hot spot in monolith is directly affected by transient flow pattern in closed-coupled catalyst.

Stress Evolution with Annealing Methods in SOI Wafer Pairs (열처리 방법에 따른 SOI 기판의 스트레스변화)

  • Seo, Tae-Yune;Lee, Sang-Hyun;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.820-824
    • /
    • 2002
  • It is of importance to know that the bonding strength and interfacial stress of SOI wafer pairs to meet with mechanical and thermal stresses during process. We fabricated Si/2000$\AA$-SiO$_2$ ∥ 2000$\AA$-SiO$_2$/Si SOI wafer pairs with electric furnace annealing, rapid thermal annealing (RTA), and fast linear annealing (FLA), respectively, by varying the annealing temperatures at a given annealing process. Bonding strength and interfacial stress were measured by a razor blade crack opening method and a laser curvature characterization method, respectively. All the annealing process induced the tensile thermal stresses. Electrical furnace annealing achieved the maximum bonding strength at $1000^{\circ}C$-2 hr anneal, while it produced constant thermal tensile stress by $1000^{\circ}C$. RTA showed very small bonding strength due to premating failure during annealing. FLA showed enough bonding strength at $500^{\circ}C$, however large thermal tensile stress were induced. We confirmed that premated wafer pairs should have appropriate compressive interfacial stress to compensate the thermal tensile stress during a given annealing process.

The Effects of Cu TSV on the Thermal Conduction in 3D Stacked IC (3차원 적층 집적회로에서 구리 TSV가 열전달에 미치는 영향)

  • Ma, Junsung;Kim, Sarah Eunkyung;Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.63-66
    • /
    • 2014
  • In this study, we investigated the effects of Cu TSV on the thermal management of 3D stacked IC. Combination of backside point-heating and IR microscopic measurement of the front-side temperature showed evolution of hot spots in thin Si wafers, implying 3D stacked IC is vulnerable to thermal interference between stacked layers. Cu TSV was found to be an effective heat path, resulting in larger high temperature area in TSV wafer than bare Si wafer, and could be used as an efficient thermal via in the thermal management of 3D stacked IC.

Surface Roughness Evolution of Gate Poly Silicon with Rapid Thermal Annealing (미세게이트용 폴리실리콘의 쾌속 열처리에 따른 표면조도 변화)

  • Song, Oh-Sung;Kim, Sang-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.3
    • /
    • pp.261-264
    • /
    • 2005
  • The 90 nm gate pattern technology have been virtualized by employing the hard mask and the planarization of fate poly silicon. We fabricated 70nm poly-Si on $200 nm-SiO_2/p-Si(100)$ substrates using low pressure chemical vapor deposition (LPCVD) to investigate roughness evolution by varying rapid annealing temperatures. The samples were annealed at the temperatures of $700^{\circ}C\~1100^{\circ}C$ for 40 seconds with a rapid thermal annealer. The surface image and the surface roughness were measured by a field emission scanning electron microscopy (FESEM) and an atomic force microscopy (AFM), respectively. The poly silicon surface became more rough as temperature increased due to surface agglomeration. The optimum conditions of poly silicon planarization were achieved by annealed at $700^{\circ}C$ for 40 seconds.

  • PDF

DYNAMICAL EVOLUTION OF SUPERNOVA REMNANTS BREAKING THROUGH MOLECULAR CLOUDS

  • Cho, Wankee;Kim, Jongsoo;Koo, Bon-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.139-154
    • /
    • 2015
  • We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code (Harten et al. 1983). We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our onedimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bright X-ray morphology shown in thermal composite SNRs. In the late stages, a breakout SNR shows the center-bright X-ray morphology inside an MC in our results. We apply our model to the observational results of the X-ray morphology of the thermal composite SNR 3C 391.

Low Splicing Loss Technique between Standard Single Mode Fiber and High Δ Fiber (표준 단일모드 광섬유와 하이델타 광섬유사이의 저 손실 접속 기법)

  • Kim, Kwang-Taek;Yang, Byoung-Cheoul
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.169-174
    • /
    • 2008
  • In this paper, we have presented techniques to reduce the splicing loss between standard single mode fiber and high ${\Delta}$ single mode fiber based on the mode expanding and mode evolution induced by thermal treatment of the fibers. The experimental results show that mechanical splicing loss can be reduced from 2.3 dB to 0.1 dB through proper thermal treatment of the high ${\Delta}$ fiber. Meanwhile, we achieved $0.2{\sim}0.4dB$ of low splicing loss between two fibers by heating the splicing region using electric arcing or an oxygen flame.