Browse > Article
http://dx.doi.org/10.5303/JKAS.2015.48.2.139

DYNAMICAL EVOLUTION OF SUPERNOVA REMNANTS BREAKING THROUGH MOLECULAR CLOUDS  

Cho, Wankee (Department of Physics and Astronomy, Seoul National University)
Kim, Jongsoo (Department of Physics and Astronomy, Seoul National University)
Koo, Bon-Chul (Korea Astronomy and Space Science Institute)
Publication Information
Journal of The Korean Astronomical Society / v.48, no.2, 2015 , pp. 139-154 More about this Journal
Abstract
We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code (Harten et al. 1983). We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our onedimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bright X-ray morphology shown in thermal composite SNRs. In the late stages, a breakout SNR shows the center-bright X-ray morphology inside an MC in our results. We apply our model to the observational results of the X-ray morphology of the thermal composite SNR 3C 391.
Keywords
Hydrodynamics; methods: numerical; ISM: supernova remnants and clouds;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wolfire, M. G., Mckee, C. F., Tielens, A. G. G. M., & Bakes, E. L. O. 1995, The Neutral Atomic Phases of the Interstellar Medium, ApJ, 443, 512
2 Xu, J., & Stone, J. M. 1995, The Hydrodynamics of Shock-Cloud Interactions in Three Dimensions, ApJ, 454, 172   DOI
3 Yorke, H. W., Tenorio-Tagle, G., Bodenheimer, P., & Rozyczka, M. 1989, The Combined Role of Ionization and Supernova Explosions in the Destruction of Molecular Clouds, A&A, 216, 207
4 Becker, R. H., White, R. L., & Helfand, D. J. 1995, The FIRST Survey: Faint Images of the Radio Sky at Twenty Centimeters, ApJ, 450, 559   DOI
5 Arthur, S. J., & Falle, A. E. G. 1991, Multigrid Methods Applied to an Explosion at a Plane Density Interface, MNRAS, 251, 93   DOI
6 Anders, E., & Grevesse, N. 1989, Abundances of the Elements: Meteoritic and Solar, Geochim. Cosmochim. Acta, 53, 197   DOI   ScienceOn
7 Chen, Y., & Slane, P. O. 2001, ASCA Observations of the Thermal Composite Supernova Remnant 3C 391, ApJ, 563, 202   DOI
8 Cornett, R. H., Chin, G., & Knapp, G. R. 1977, Observations of CO Emission from a Dense Cloud Associated with the Supernova Remnant IC 443, A&A, 54, 889
9 Denoyer, L. K. 1979, Discovery of Shocked CO within a Supernova Remnant, ApJl, 232, L165   DOI
10 Dohm-Palmer, R. C., & Jones, T. W. 1996, Young Supernova Remnants in Nonuniform Media, ApJ, 471, 279   DOI
11 Chen, Y., Slane, P. O., & Wang, Q. D. 2004, A Chandra ACIS View of the Thermal Composite Supernova Remnant 3C 391, ApJ, 616, 885   DOI
12 Chen, Y., Su, Y., Slane, P. O., & Wang, Q. D. 2005, Chandra Spectroscopy of Supernova Remnant 3C 391, JKAS, 38, 211
13 Cox, D. P., Shelton, R. L., Maciejewski, W., Smith, R. K., Plewa, T., Pawl, A., & Rózyczka, M. 1999, Modeling W44 as a Supernova Remnant in a Density Gradient with a Partially Formed Dense Shell and Thermal Conduction in the Hot Interior. I. The Analytical Model, ApJ, 524, 179   DOI
14 Falle, S. A. E. G., & Garlick, A. R. 1982, A model of the Cygnus Loop, MNRAS, 115, 247
15 Koo, B.-C., & Mckee, C. F., 1990, Dynamics of Adiabatic Blast Waves in Media of Finite Mass, ApJ, 354, 513   DOI
16 Ferreira, S. E. S., & de Jagar, O. C. 2008, Supernova Remnant Evolution in Uniform and Non-Uniform Media, A&A, 478, 17
17 Harten, A., Lax, P. D., & van Leer, B. 1983, On Upstream Differencing and Godunov Type Methods for Hyperbolic Conservation Laws, SIAM Rev., 25(1), 35-61   DOI   ScienceOn
18 McKee, C. F., & Ostriker, J. P. 1977, A Theory of the Interstellar Medium - Three Components Regulated by Supernova Explosions in an Inhomogeneous Substrate, ApJ, 218, 148   DOI
19 Jiang, B., Chen, Y., Wang, J., Wang, J., Su, Y., Zhou, X., Safi-Harb, S., & Delaney, T. 2010, Cavity of Molecular Gas Associated with Supernova Remnant 3C 397, ApJ, 712, 1147   DOI
20 Koo, B.-C., & Kang, J.-H. 2004, Visibility of Old Supernova Remnants in HI 21-cm Emission Line, MNRAS, 349, 983   DOI   ScienceOn
21 Petruk, O. 2001, Thermal X-Ray Composites as an Effect of Projection, A&A, 371, 267
22 Raymond, J. C., & Smith, B. W. 1977, Soft X-Ray Spectrum of a Hot Plasma, ApJS, 35, 419   DOI
23 Reynolds, S. P., & Moffett, D. A., 1993, High-Resolution Radio Observations of the Supernova Remnant 3C 391 - Possible Breakout Morphology, AJ, 105, 2226   DOI
24 Rho, J., & Peter, R. 1998, Mixed-Morphology Supernova Remnants, ApJ, 503, L167   DOI
25 Sánchez-salcedo, F. J., Vázquez-Semadini, E., & Gazol, A. 2002, The Nonlinear Development of the Thermal Instability in the Atomic Interstellar Medium and Its Interaction with Random Fluctuations, ApJ, 577, 768   DOI
26 Sedov, L. I. 1946, Propagation of Strong Shock Waves, Prikl. Mat. Mekh., 10, 241
27 Shull, J. M. 1980, The Signature of a Buried Supernova, ApJ, 237, 769   DOI
28 Seward, F. D. 1985, Comments Astrophys. XI, 1, 15
29 Seward, F. D. 1999, Allens Astrophysical Quantities, 4th edition, ed. by A. N. Cox, 195
30 Shapiro, R. P., & Moore, R. T. 1976, Time-Dependent Radiative Cooling of a Hot, Diffuse Cosmic Gas, and the Emergent X-Ray Spectrum, ApJ, 207, 460   DOI
31 Sod, G. A. 1978, A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws, J. Comput. Phys., 27, 1   DOI   ScienceOn
32 Taylor, G. I. 1950, The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion, Proc. Roy. Soc. London A, 201, 159   DOI
33 Tenorio-Tagle, G., Bodenheimer, P., & Yorke, H. W. 1985, Non-Spherical Supernova Remnants. II - The Interaction of Remnants with Molecular Clouds, A&A, 145, 70
34 Tilley, D. A., Balsara, D. S., & Howk, J. C. 2006, Simulations of Mixed-Morphology Supernova Remnants with Anisotropic Thermal Conduction, MNRAS, 371, 1106   DOI   ScienceOn
35 Velázquez, P., de la Fuente, E., Rosado, M., & Raga, A. C. 2001, A Single Explosion Model for the Supernova Remnant 3C 400.2, A&A, 377, 1136
36 Wang, Z. R., & Seward, F. D. 1984, X-Rays from the SNR 3C 391, ApJ, 279, 705   DOI
37 Wheeler, J. C., Mazurek, T. J., & Sivaramakrishnan, A. 1980, Supernovae in Molecular Clouds, ApJ, 237, 781   DOI
38 White, R. L., & Long, K. S. 1991, Supernova Remnant Evolution in an Interstellar Medium with Evaporating Clouds, ApJ, 373, 543   DOI
39 Wilner, D. J., Reynolds, S. P., & Moffett, D. A. 1998, CO Observations toward the Supernova Remnant 3C 391, AJ, 115, 247   DOI   ScienceOn
40 Cioffi, D. F., Mckee, C. F., & Bertshinger, E. 1988, Dynamics of Radiative Supernova Remnants, ApJ, 334, 252   DOI