Browse > Article
http://dx.doi.org/10.7780/kjrs.2021.37.4.1

Analyzing the Evolution of Summer Thermal Anomalies in Busan Using Remote Sensing and Spatial Statistical Tool  

Njungwi, Nkwain Wilfred (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University)
Lee, Daeun (College of Environmental and Marine Sciences and Technology, Spatial Information Engineering, Pukyong National University)
Kim, Minji (College of Environmental and Marine Sciences and Technology, Spatial Information Engineering, Pukyong National University)
Jin, Cheonggil (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University)
Choi, Chuluong (College of Environmental and Marine Sciences and Technology, Spatial Information Engineering, Pukyong National University)
Publication Information
Korean Journal of Remote Sensing / v.37, no.4, 2021 , pp. 665-685 More about this Journal
Abstract
This study focused on the a 20-year evaluation of the dynamism of critical thermal anomalies in Busan metropolitan area prompted by unusual infrastructural development and demographic growth rate. Archived Landsat thermal data derived-LST was the major input for UTFVI and hot spot analysis (Getis-Ord Gi*). Results revealed that the surface urban heat island-affected area has gradually expanded overtime from 23.32% to 32.36%; while the critical positive thermal anomalies (level-3 hotspots) have also spatially increased from 19.88% in 2000 to 23.56% in 2020, recording a net LST difference of > 5℃ between the maximum level-3 hotspot and minimum level-3 coldspot each year. It is been observed that thermal conditions of Busan have gradually deteriorated with time, which is potentially inherent in the rate of urban expansion. Thus, this work serves as an eye-opener to powers that be, to think and act constructively towards a sustainable thermal conform for city dwellers.
Keywords
Land Surface Temperature; Surface Urban Heat Island; Urban Thermal Field Variance Index; Thermal Anomalies; Hot Spot Analysis (Getis-Ord $Gi^*$);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Xian, G. and M. Crane, 2006. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data, Remote Sensing of Environment, 104(2): 147-156.   DOI
2 Yang, H., C. Xi, X. Zhao, P. Mao, Z. Wang, Y. Shi, T. He, and Z. Li, 2020. Measuring the urban land surface temperature variations under Zhengzhou city expansion using landsat-like data, Remote Sensing, 12(5): 801.   DOI
3 Yang, X., Y. Li, Z. Luo, and P.W. Chan, 2017. The urban cool island phenomenon in a high-rise high-density city and its mechanisms, International Journal of Climatology, 37(2): 890-904.   DOI
4 Yu, X., X. Guo, and Z. Wu, 2014. Land surface temperature retrieval from landsat 8 TIRS-comparison between radiative transfer equation-based method, split window algorithm and single channel method, Remote Sensing, 6(10): 9829-9852.   DOI
5 Zhang, C., W. Li, and D. Travis, 2007. Gaps-fill of SLC-off Landsat ETM+ satellite image using a geostatistical approach, International Journal of Remote Sensing, 28(22): 5103-5122.   DOI
6 Zhang, C., W. Li, and D. Civco, 2014. Application of geographically weighted regression to fill gaps in SLC-off Landsat ETM+ satellite imagery, International Journal of Remote Sensing, 35(22): 7650-7672.   DOI
7 Zhou, D., J. Xiao, S. Bonafoni, C. Berger, K. Deilami, Y. Zhou, S. Frolking, R.Yao, Z. Qiao, and J.A. Sobrino, 2019. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives, Remote Sensing, 11(1): 48.   DOI
8 Zeng, C., H. Shen, and L. Zhang, 2013. Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method, Remote Sensing of Environment, 131: 182-194.   DOI
9 Zhou, X., T. Okaze, C. Ren, M. Cai, Y. Ishida, H. Watanabe, and A. Mochida, 2020. Evaluation of urban heat islands using local climate zones and the influence of sea-land breeze, Sustainable Cities and Society, 55(2020): 102060.   DOI
10 Zhu, X., D. Liu, and J.Chen, 2012. A new geostatistical approach for filling gaps in Landsat ETM+ SLC-off images, Remote Sensing of Environment, 124: 49-60.   DOI
11 EPA(United States Environmental Protection Agency), 2008. Reducing Urban Heat Island: Compendium of Strategies, United States Environmental Protection Agency, https://www.epa.gov/heatislands/heat-island-compendium, Accessed on Jul. 20, 2021.
12 Ahmed Memon, R., Y.C. Leung, and L. Chunho, 2008. A review on the generation, determination and mitigation of Urban Heat Island, Journal of Environmental Sciences, 20(1): 120-128.   DOI
13 Allegrini, J., V. Dorer, and J.Carmeliet, 2015. Influence of morphologies on the microclimate in urban neighbourhoods, Journal of Wind Engineering and Industrial Aerodynamics, 144: 108-117.   DOI
14 Artis, D.A. and W.H. Carnahan, 1982. Survey of emissivity variability in thermography of urban areas, Remote Sensing of Environment, 12(4): 313-329.   DOI
15 Tran, H., D. Uchihama, S. Ochi, and Y. Yasuoka, 2006. Assessment with satellite data ofthe urban heat island effects in Asian mega cities, International Journal of Applied Earth Observation and Geoinformation, 8(1): 34-48.   DOI
16 Atkinson, B.W., 2003. Numerical modelling of urban heat-islandintensity, Boundary-Layer Meteorology, 109(3): 285-310.   DOI
17 Do,W.-G. and J.-G.Jo, 2007. An Analysis of Temporal and Spatial Characteristics of the Urban Heat Island in Busan, The Annual Report of Busan Metropolitan City Institute of Health & Environment, 17(1): 128-135 (in Korean with English abstract).
18 Do. W.-G. and W.-S. Jung, 2012. An Analysis on the Variation Trend of Urban Heat Island in Busan Area (2006-2010), Journal of the Environmental Sciences, 21(8): 953-963 (in Korean with English abstract).   DOI
19 Erell, E., D. Pearlmutter, and T. Williamson, 2011. Urban Microclimate: Designing the Spaces Between Buildings, Earthscan, London, United Kingdom, pp. 23-24.
20 Fabrizi, R., S. Bonafoni, and R. Biondi, 2010. Satellite and ground-based sensors for the Urban Heat Island analysis in the city of Rome, Remote Sensing, 2(5): 1400-1415.   DOI
21 Feranec, J., M. Kopecka, D. Szatmari, J. Holec, P. St'astny, R. Pazur, and H. Bobalova, 2019. A review of studies involving the effect of land cover and land use on the urban heat island phenomenon, assessed by means of the MUKLIMO model, Geografie-Sbornik CGS, 124(1): 83-101.
22 Fonseka, H.P.U., H. Zhang, Y. Sun, H. Su, H. Lin, and Y. Lin, 2019. Urbanization and its impacts on land surface temperature in Colombo Metropolitan Area, Sri Lanka, from 1988 to 2016, Remote Sensing, 11(8): 957.   DOI
23 Frohlich, C. and J. Lean, 2004. Solar radiative output and its variability: evidence and mechanisms, The Astronomy and Astrophysics Review, 12(4): 273-320.   DOI
24 Kim,Y.H. and J.-J. Baik, 2004. Daily maximum urban heat island intensity in large cities of Korea, Theoretical and Applied Climatology, 79(3-4): 151-164.   DOI
25 Scaramuzza, P., E. Micijevic, and G. Chander, 2004. SLC gap-filled products: Phase one methodology, https://www.usgs.gov/media/files/landsat-7-slc-gap-filled-products-phaseone-methodology, Accessed on Jul. 20, 2021.
26 Salata, F., I. Golasi, A. Lieto Vollaro, and R. Lieto Vollaro, 2015. How high albedo and traditional buildings' materials and vegetation affect the quality of urban microclimate, A case study, Energy and Buildings, 99: 32-49.   DOI
27 Sasaki, K.,A. Mochida, H.Yoshino, H.Watanabe, and T. Yoshida, 2008. A new method to select appropriate countermeasures against heat-island effects according to the regional characteristics of heat balance mechanism, Journal of Wind Engineering and Industrial Aerodynamics, 96(10-11): 1629-1639.   DOI
28 Khorchani, M., N. Martin-Hernandez, S.M. Vicente-Serrano, C. Azorin-Molina, M. Garcia, M.A. Dominguez-Duran, F.Reig, M. Pena-Gallardo, and F. Dominguez-Castro, 2018. Average annual and seasonal land surface temperature, spanish peninsular, Journal of Maps, 14(2): 465-475.   DOI
29 Kim, Y.H. and J.-J. Baik, 2002. Maximum urban heat island intensity in Seoul, Journal of Applied Meteorology, 41(6): 651-659.   DOI
30 Schwarz, N., S. Lautenbach, and R. Seppelt, 2011. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures, Remote Sensing of Environment, 115(12): 3175-3186.   DOI
31 Sekertekin A. and S. Bonafoni, 2020. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation, Remote Sensing, 12(2): 294.   DOI
32 Seto, K.C. and J.M. Shepherd, 2009. Global urban land-use trends and climate impacts, Current Opinion in Environmental Sustainability, 1(1): 89-95.   DOI
33 Lawrence, P.J., J.J. Feddema, G.B. Bonan, G.A. Meehl, B.C. O'Neill, K.W. Oleson, S. Levis, D.M. Lawrence, E. Kluzek, K. Lindsay, and P.E. Thornton, 2012. Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100, Journal of Climate, 25(9): 3071-3095.   DOI
34 Voogt, J.A. and T.R. Oke, 2003. Thermal remote sensing of urban climates, Remote Sensing of Environment, 86(3): 370-384.   DOI
35 Seto, K.C., M. Fragkias,B. Guneralp, and M.K.Reilly, 2011. A meta-analysis of global urban land expansion, PLoS ONE, 6(8): e23777.   DOI
36 Sobrino, J.A., J.C. Jimenez-Munoz, and L. Paolini, 2004. Land surface temperature retrieval from LANDSAT TM 5, Remote Sensing of Environment, 90(4): 434-440.   DOI
37 Sobrino, J.A., J.C. Jimenez-Munoz, G. Soria, M. Romaguera, L. Guanter, J. Moreno, A. Plaza, and P. Martinez, 2008. Land surface emissivity retrieval from different VNIR and TIR sensors, IEEE Transactions on Geoscience and Remote Sensing, 46(2): 316-327.   DOI
38 Solanki, S.K., N.A. Krivova, and J.D. Haigh, 2013. Solar irradiance variability and climate, Annual Review of Astronomy and Astrophysics, 51: 311-351.   DOI
39 Li, X., W. Zhou, and Z. Ouyang, 2013. Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution?, Landscape and Urban Planning, 114: 1-8.   DOI
40 Liu, H. and Q. Weng, 2008. Seasonal variations in the relationship between landscape pattern and land surface temperature in Indianapolis, USA, Environmental Monitoring and Assessment, 144(1-3): 199-219.   DOI
41 Liu, L. and Y. Zhang, 2011. Urban heat island analysis using the landsat TM data and ASTER Data:A case study in Hong Kong, Remote Sensing, 3(7): 1535-1552.   DOI
42 Guerri, G., A. Crisci, A. Messeri, L. Congedo, M. Munafo, and M. Morabito, 2021. Thermal summer diurnal hot-spot analysis: The role of local urban features layers, Remote Sensing, 13(3): 538.   DOI
43 Odoemene, A., 2017. Chapter 15: Climate change and land grabbing, In: Angelo M. J. and A. D. Plesis, Research Handbook onClimateChange and Agricultural Law, Edward Elgar Publishing, Cheltenham, United Kingdom, pp. 423-449.
44 Majkowska, A., L. Kolendowicz, M. Polrolniczak, J. Hauke, and B. Czernecki, 2017. The urban heat island in the city of Poznan as derived from Landsat 5 TM, Theoretical and Applied Climatology, 128(3-4): 769-783.   DOI
45 Kim, H.S., H.-B. Seok, Y.-K. Kim, 2014. A Study on the Change of the Urban Heat Island Structure in Busan Metropolitan Area, Korea, Journal of Environmental Science International, 23(11): 1807-1819.   DOI
46 Griffiths, P., P. Hostert, O. Gruebner, and S. van der Linden, 2010. Mapping megacity growth with multi-sensor data, Remote Sensing of Environment, 114(2): 426-439.   DOI
47 Grigoras, G. and B. Uritescu, 2018. Spatial Hotspot Analysis of Bucharest's Urban Heat Island (UHI) Using Modis Data, Annals of Valahia University of Targoviste, Geographical Series, 18(1): 14-22.   DOI
48 Guha, S., H. Govil,A. Dey, and N. Gill, 2018. Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy, European Journal of Remote Sensing, 51(1): 667-678.   DOI
49 Herbel, I., A.-E. Croitoru, I. Rus, G.V. Harpa, and A.F. Ciupertea, 2016. Detection of atmospheric urban heat island through direct measurements in Cluj-Napoca city, Romania, Hungarian Geographical Bulletin, 65(2): 117-218.   DOI
50 Howard, L., 1820. The Climate of London: Deduced from Meteorological Observations Made at Different Places in the Neighbourhood of the Metropolis. In Two Volumes, Printed and Sold by W. Phillips, George Yard, Lombard Street, London, UK.
51 Barsi, J.A., K. Lee, G. Kvaran, B.L. Markham, and J.A. Pedelty, 2014. The Spectral Response of the Landsat-8 Operational Land Imager, Remote Sensing, 6(10): 10232-10251.   DOI
52 Huang, Q., J. Huang, X. Yang, C. Fang, and Y. Liang, 2019. Quantifying the seasonal contribution of coupling urban land use types on Urban Heat Island using Land Contribution Index: A case study in Wuhan, China, Sustainable Cities and Society, 44: 666-675.   DOI
53 Jin, M., R.E. Dickinson, and A.M. Vogelmann, 1997. Acomparison of CCM2-BATS skin temperature and surface-air temperature with satellite and surface observations, Journal of Climate, 10(7): 1505-1524.   DOI
54 Karakus, C.B., 2019. The Impact of Land Use/Land Cover (LULC) Changes on Land Surface Temperature in Sivas City Center and Its Surroundings and Assessment of Urban Heat Island, Asia-Pacific Journal of Atmospheric Sciences, 55(4): 669-684.   DOI
55 Buyantuyev, A. and J. Wu, 2010. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns, Landscape Ecology, 25(1): 17-33.   DOI
56 Cao, X., A. Bao, X. Chen, and Y. Xia, 2008. Land surface temperature in response to land use/cover change based on remote sensing data in Sangong River, Proc. of Remote Sensing and Modeling of Ecosystems for Sustainability V: OpticalEngineering+Applications, San Diego, CA, Aug. 10-14, vol. 7083, p. 1.
57 Chen, J., X. Zhu, J.E. Vogelmann, F. Gao, and S. Jin, 2011. Asimple and effective method for filling gaps in Landsat ETM+ SLC-off images, Remote Sensing of Environment, 115(4): 1053-1064.   DOI
58 Clauser, C., 2009. Heat transport processes in the earth's crust, Surveys in Geophysics, 30(3): 163-191.   DOI
59 Mavrakou, T., A. Polydoros, C. Cartalis, and M. Santamouris, 2018. Recognition of thermal hot and cold spots in Urban areas in support of mitigation plans to counteract overheating: Application for Athens, Climate, 6(1): 16.   DOI
60 Comarazamy, D.E., J.E. Gonzalez, and J.C. Luvall, 2015. Quantification and mitigation of long-term impacts of urbanization and climate change in the tropical coastal city of San Juan, Puerto Rico, International Journal of Low-Carbon Technologies, 10(1): 87-97.   DOI
61 Maxwell, S.K., G.L. Schmidt, and J.C. Storey, 2007. A multi-scale segmentation appro ach to filling gaps in Landsat ETM+ SLC-off images, International Journal of Remote Sensing, 28(23): 5339-5356.   DOI
62 Memon, R.A., D.Y.C. Leung, and C.H. Liu, 2009. An investigation of urban heat island intensity (UHII) as an indicator of urban heating, Atmospheric Research, 94(3): 491-500.   DOI
63 Morris, C.J.G., I. Simmonds, and N. Plummer, 2001. Quantification of the influence of wind and cloud on the nocturnal urban heat island of a large city, Journal of Applied Meteorology, 40(2): 169-182.   DOI
64 Oke, T.R., 1987. Boundary Layer Climates Second Edition, Routledge, London, UK.
65 Pal, S. and S. Ziaul, 2017. Detection of land use and land cover change and land surface temperature in English Bazar urban centre, Egyptian Journal of Remote Sensing and Space Science, 20(1): 125-145.   DOI
66 Pielke, Sr.R.A., 2005. Land use and climate change, Science, 310(5754): 1625-1626.   DOI
67 Portela, C.I., K.G. Massi, T. Rodrigues, and E. Alcantara, 2020.Impact of urban and industrial features on land surface temperature:Evidences from satellite thermal indices, Sustainable Cities and Society, 56(102100): 1-13.
68 Sulong, G., A. Sadiq, and L. Edwar, 2015. Single and Multi-source Methods for Reconstruction the Gaps in Landsat 7 ETM+ SLC-off Images, Research Journal of Applied Sciences, Engineering and Technology, 11(4): 423-428.   DOI
69 Renard, F., L. Alonso, Y. Fitts, A. Hadjiosif, and J. Comby, 2019. Evaluation of the effect of urban redevelopment on surface urban heat islands, Remote Sensing, 11(3): 1-31.
70 Rosenfeld, A. H., H. Akbari, J. J. Romm, and M. Pomerantz, 1998. Cool communities: Strategies for heat island mitigation and smog reduction, Energy and Buildings, 28(1): 51-62.   DOI
71 Toparlar Y., 2018. A multiscale analysis of the urban heatisland effect: from city averaged temperatures to the energy demand of individual buildings, Technische Universiteit Eindhoven, Eindhoven, NL.
72 Unger, J., 2004. Intra-urban relationship between surface geometry and urban heat island:Review and new approach, Climate Research, 27(3): 253-264.   DOI
73 UN(United Nations), 2014. World Urbanization Prospects: The 2014 Revision, Highlights, https://population.un.org/wup/Publications/Files/WUP2014-Report.pdf, Accessed on Jul. 20, 2021.
74 USGS(United States Geological Survey), 2004. Landsat 7 SLC-off Gap-Filled Products Phase Two Methodology, https://www.usgs.gov/media/files/landsat-7-slc-gap-filled-products-phasetwo-methodology, Accessed on Jul. 20, 2021.
75 USGS(United States Geological Survey), 2016. Landsat 8 Data Users Handbook, https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8-data-users-handbook, Accessed on Jul. 20, 2021.
76 Wang, S., Q. Ma, H. Ding, and H. Liang, 2016. Detection of urban expansion and land surface temperature change using multi-temporal landsat images, Resources, Conservation and Recycling, 128: 526-534.   DOI
77 Alexandridis, T.K., I. Cherif, C. Kalogeropoulos, S. Monachou, K. Eskridge, and N. Silleos, 2013. Rapid error assessment for quantitative estimations from Landsat 7 gap-filled images, Remote Sensing Letters, 4(9): 920-928.   DOI
78 Weston, K.J., 1988. Boundary layer climates (Second edition).ByT.R. Oke. Methuen. 1987. Pp. 435 + xvi. £39.95 hardback; £14.95 paperback, Quarterly Journal of the Royal Meteorological Society, 114: 1568.   DOI
79 UN(United Nations), 2018. World Urbanization Prospects: The 2018 Revision. https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf, Accessed on Jul. 20, 2021.
80 Guha, S., H. Govil, and S. Mukherjee, 2017. Dynamic analysis and ecological evaluation of urban heat islands in Raipur city, India, Journal of Applied Remote Sensing, 11(3): 036020.
81 Deilami, K., M. Kamruzzaman, and Y. Liu, 2018. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures, International Journal of Applied Earth Observation and Geoinformation, 67: 30-42.   DOI
82 Foley, J.A., R. DeFries, G.P. Asner, C. Barford, G. Bonan, S.R. Carpenter, F.S. Chapin, M.T. Coe, G.C. Daily, H.K. Gibbs, J.H. Helkowski, T. Holloway, E.A. Howard, C.J. Kucharik, C. Monfreda, J.A. Patz, I.C. Prentice, N. Ramankutty, and P.K. Snyder, 2005. Global consequences of land use, Science, 309(5734): 570-574.   DOI
83 Huang, H., R. Ooka, and S. Kato, 2005. Urban thermal environment measurements and numerical simulation for an actual complex urban area covering a large district heating and cooling system in summer, Atmospheric Environment, 39(34): 6362-6375.   DOI
84 Snyder, W.C., Z. Wan, Y. Zhang, and Y.-Z. Feng, 1998. Classification-based emissivity for land surface temperature measurement from space, International Journal of Remote Sensing, 19(14): 2753-2774.   DOI
85 Mahmood, R., Sr.R.A. Pielke, K.G. Hubbard, D. Niyogi, P.A. Dirmeyer, C. McAlpine, A.M. Carleton, R. Hale, S. Gameda, A. Beltran-Przekurat, B. Baker, R. McNider, D.R. Legates, M. Shepherd, J. Du, P.D. Blanken, O.W. Frauenfeld, U.S. Nair, and S. Fall, 2014. Land cover changes and their biogeophysical effects on climate, International Journal of Climatology, 34(4): 929-953.   DOI
86 Reay, D., C. Sabine, P. Smith, and G. Hymus, 2007. Spring-time for sinks, Nature, 446: 727-728.   DOI