• Title/Summary/Keyword: Thermal and mechanical properties

Search Result 2,699, Processing Time 0.033 seconds

Changes in the Mechanical Behavior of Thermal Barrier Coatings Caused by Thermal Shock (열충격에 의한 열차폐 코팅재의 기계적 거동 변화)

  • Jang, Bin;Lee, Kee Sung;Kim, Tae Woo;Kim, Chul
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • This study investigates changes in the mechanical behaviors, especially hardness and indentation load-displacement curves, of thermal barrier coatings (TBCs) brought about by thermal shock. The TBCs on the Nickel-based bondcoat/superalloy was prepared with diameters of 25.4 mm and $600{\mu}m$ thickness. The results of thermal shock cycling test from $1100^{\circ}C$ of the highest temperature indicate that the thermal shock do not influence on the mechanical behavior, but a continuous decrease in porosity and increase in hardness were observed after 1200 thermal shock cycles; these changes are believed to be due to sintering of thermal barrier coating materials. The results that no degradation in the indentation load-displacement curves indicate that the coating shows good thermal shock resistance up to 1200 cycles at $1100^{\circ}C$ in air.

Evaluation of mechanical properties of polylactic acid and photopolymer resin processed by 3D printer fused deposition modeling and digital light processing at cryogenic temperature

  • Richard G. Pascua;Gellieca Dullas;SangHeon Lee;Hyung-Seop Shin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.2
    • /
    • pp.19-23
    • /
    • 2024
  • 3D printing has the advantage of being able to process various types of parts by layering materials. In addition to these advantages, 3D printing technology allows models to be processed quickly without any special work that can be used in different fields to produce workpieces for various purposes and shapes. This paper deals to not only increase the utilization of 3D printing technology, but also to revitalize 3D printing technology in applications that require similar cryogenic environments. The goal of this study is to identify the mechanical properties of polylactic acid and photopolymer resin processed by Fused Deposition Modeling (FDM) and Digital Light Processing (DLP) respectively. The entire process is meticulously examined, starting from getting the thermal contraction using an extensometer. A uniaxial tensile test is employed, which enables to obtain the mechanical properties of the samples at both room temperature (RT) and cryogenic temperature of 77 K. As the results, photopolymer resin exhibited higher tensile properties than polylactic acid at RT. However, at cryogenic temperatures (77 K), the photopolymer resin became brittle and failure occurred due to thermal contraction, while polylactic acid demonstrated superior tensile properties. Therefore, polylactic acid is more suitable for lower temperatures.

Thermal Shock Properties of 316 Stainless Steel (316 스테인레스강의 열충격 특성)

  • Lee, Sang-Pill;Kim, Young-Man;Min, Byung-Hyun;Kim, Chang-Ho;Son, In-Soo;Lee, Jin-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.22-27
    • /
    • 2013
  • The present work dealt with the high temperature thermal shock properties of 316 stainless steels, in conjunction with a detailed analysis of their microstructures. In particular, the effects of the thermal shock temperature difference and thermal shock cycle number on the properties of 316 stainless steels were investigated. A thermal shock test for 316 stainless steel was carried out at thermal shock temperature differences from $300^{\circ}C$ to $1000^{\circ}C$. The cyclic thermal shock test for the 316 stainless steel was performed at a thermal shock temperature difference of $700^{\circ}C$ up to 100 cycles. The characterization of 316 stainless steels was evaluated using an optical microscope and a three-point bending test. Both the microstructure and flexural strength of 316 stainless steels were affected by the high-temperature thermal shock. The flexural strength of 316 stainless steels gradually increased with an increase in the thermal shock temperature difference, accompanied by a growth in the grain size of the microstructure. However, a thermal shock temperature difference of $800^{\circ}C$ produced a decrease in the flexural strength of the 316 stainless steel because of damage to the material surface. The properties of 316 stainless steels greatly depended on the thermal shock cycle number. In other words, the flexural strength of 316 stainless steels decreased with an increase in the thermal shock cycle number, accompanied by a linear growth in the grain size of the microstructure. In particular, the 316 stainless steel had a flexural strength of about 500 MPa at 100 thermal-shock cycles, which corresponded to about 80% of the strength of the as-received materials.

Mechanical and Thermal Properties of Cured Specimen or DGEBA/DDM System (DGEBA/DDM계 에폭시수지 경화 시험편의 기계적 및 열적특성)

  • Kim, Kong-Soo;Park, Jun-Ha;Kim, Ki-Wun;Kim, Young-Jun
    • Elastomers and Composites
    • /
    • v.33 no.1
    • /
    • pp.10-16
    • /
    • 1998
  • In DGEBA/DDM system, the curing specimen are many curing factors which can affect on thermal and mechanical properties. This study was performed to prove the effect on curing specimen prepared by changing of the curing factors which are curing time and temperature of DGEBA/DDM system. As a result on thermal and mechanical properties, flexural strength, modulus and glass transition temperature (Tg) were increased with curing time and temperature were increased. It was found that the optimum curing condition of DGEBA/DDM system cure at $150^{\circ}C$ for 3hrs at equivalent ratio of 1/1.

  • PDF

Thermal and Mechanical Properties of Insulation Materials for Underground Power Cable (지중 전력케이블용 절연재료의 열적 특성 및 기계적 특성)

  • Lee, Kyoung-Yong;Lee, Kwan-Woo;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.138-141
    • /
    • 2004
  • In this paper, we Investigated effects on impurities and water of semiconductive shield through a thermal, mechanical, and absorption experiment to estimate performance of insulating materials in power cable. Specimens had been prepared 22[kV], 154[kV] XLPE power cables and then were made of sheet form with XLPE and semiconductive shield with dimension of 0.4[mm] ~1.2[mm] of thickness from power cable. Heat capacity $({\Delta}H)$ and glass trasition temperature (Tg) of XLPE sheet were measured by DSC (Differential Scanning Calorimetry). We could know that thermal stabilities of 154[kV] are more excellent than 22[kV] from this experimental result. The strain of mechanical properties in 22[kV] and 154[kV] XLPE was 486[%], 507[%] and stress was 1.74$[kgf/mm^2]$, 1.80$[kgf/mm^2]$. The absorption contents of existing semiconductive shield were measured 710[ppm] to 1,090[ppm], and semiconductive shield of 22[kV] cable was measured 14,750[ppm] to 24,780[ppm]. We thermal and mechanical properties of 154[kV] could know more excellent than 22[kV] from this experimental result.

  • PDF

A Study on the strengthening of titania ceramic coating layer on the steel substrate (티타니아 세라믹 熔射皮膜의 强度向上에 관한 硏究)

  • 김영식
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.181-189
    • /
    • 1992
  • The purpose of this investigation is to examine the effects of the strengthening treatments on the mechanical properties of the flame-sprayed titania ceramic coating layer. The strengthening treatments for flame sprayed specimens were carried out in 12 different conditions in vaccum furance. The mechanical properties such as microhardness, thermal shock resistance, adhesive strength and erosion resistance were tested for the sprayed specimens after strengthening treatments. And it was clear that the mechanical properties of coating layer were much improved by the strengthening treatments. The results obtained are summarized as follows; 1. It was shown that the metallurgical bond was formed between substrate and coating layer by the strengthening treatments and that thermal shock resistance and adhesive strength were remarkably raised. 2. Microhardness of coating lay was considerably increased by the strengthening treatments. 3. Erosion resistance and porosity of coating layer were slightly improved by the strengthening treatments.

  • PDF

Toughnening of Dielectric Material by Thermoplastic Polymer

  • Lee, Jung-Woo;Cho, Jae-Choon;Ra, Seung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.207-208
    • /
    • 2007
  • Recently, high performance microelectronic devices are designed in multi-layer structure in order to make dense wiring of metal conductors in compact size. Imprint lithography have received significant attention due to an alternative technology for photolithography on such devices. In this work, we synthesized dielectric composite materials based on epoxy resin, and investigated their thermal stabilities and dynamic mechanical properties for thermal imprint lithography. In order to enhance the mechanical properties and toughness of dielectric material, various modified polyetherimide(PEI) was applied in the resin system. Curing behaviours, thermal stabilities, and dynamic mechanical properties of the dielectric materials cured with various conditions were studied using dynamic differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), and Universal Test Method (INSTRON).

  • PDF

Numerical Study on Thermo-Hydro-Mechanical Coupling in Rock with Variable Properties by Temperature (암석의 온도의존성을 고려한 열-수리-역학적 상호작용의 수치해석적 연구)

  • 안형준;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 1997
  • It is necessary to study on thermo-hydro-mechanical effect at rock mass performing project such as radiowaste disposal in deep rock mass. In this study, thermo-hydro-mechanical coupling analysis which is considered interaction and the variation of rock properties induced by temperature increase was performed for the circular shaft when appling temperature of 20$0^{\circ}C$ at the shaft wall. The shaft is diameter of 2 m and under hydrostatic stress of 5 MPa. In the cases, thermal expansion by temperature increase progress from the wall to outward and thermal expansion could induce tensile stress over the tensile strength of rock mass at the wall. When rock properties were given as a function of temperature, thermal expansion increased, tensile stress zone expanded. Lately, water flow is activated by increase of permeability and decrease of viscosity.

  • PDF

Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties

  • Kar, Vishesh R.;Panda, Subrata K.;Mahapatra, Trupti R.
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.205-221
    • /
    • 2016
  • In this article, the buckling responses of functionally graded curved (spherical, cylindrical, hyperbolic and elliptical) shell panels under elevated temperature load are investigated numerically using finite element steps. The effective material properties of the functionally graded shell panel are evaluated using Voigt's micromechanical model through the power-law distribution with and without temperature dependent properties. The mathematical model is developed using the higher-order shear deformation theory in conjunction with Green-Lagrange type nonlinear strain to consider large geometrical distortion under thermal load. The efficacy of the proposed model has been checked and the effects of various geometrical and material parameters on the buckling load are analysed in details.

Analysis on Enameled Container with Different Coating Thicknesses of Enamel in Pyrolysis Process (법랑공정에서 Enamel 도포두께에 따른 강판 용기의 변형 메커니즘 분석)

  • Park, Sang-Hu;Kang, Dong-Suk;Yu, Jae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.67-74
    • /
    • 2020
  • To predict the thermal deformation of an oven cabinet during the enamel process, we propose a simple finite element analysis method comprising two steps: heating and cooling. To this end, the basic mechanical and thermal properties such as thermal expansion of the enamel and steel plate were experimentally studied, and the mechanical properties of four different stainless steel (SUS) plates were evaluated to select the target material for the oven at high temperature conditions from 400 ℃ to 700 ℃. In the first analysis step of the enamel process, the SUS plate was heated to 850 ℃ and was then thermally expanded without considering the enamel coating. Next, assuming the perfect bonding of two materials (enamel coating and metal plate), the enamel plate was allowed to cool to room temperature till 22 ℃. From the results of comparing the experimental and analytical data, we can make a conclusion that the proposed method can be applied to evaluate the thermal deformation of enamel products. Especially, the thermal deformation of the oven can be predicted with different enamel coating conditions, such as uniform and nonuniform coating thickness.