References
- Abdelhak, Z., Hadji, L., Daouadji, T.H. and Bedia, E.A. (2015), "Thermal buckling of functionally graded plates using a n-order four variable refined theory", Adv. Mat. Res., 4(1), 31-44. https://doi.org/10.12989/amr.2015.4.1.31
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Composites: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
- Bouiadjra, M. B., Houari, M. S. A. and Tounsi, A. (2012), "Thermal buckling of functionally graded plates according to a four-variable refined plate theory", J. Therm. Stress., 35(8), 677-694. https://doi.org/10.1080/01495739.2012.688665
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
- Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Bourada, M., Tounsi, A., Houari, M.S.A., Abbes, E. and Bedia, A. (2011), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandwich Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
- Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Computat. Method, 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
- Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2009), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, Singapore.
- Daouadji, T.H., Adim, B. and Benferhat, R. (2016), "Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation", Adv. Mat. Res., 5(1), 35-53. https://doi.org/10.12989/amr.2016.5.1.035
- Ganapathi, M. and Prakash, T. (2006), "Thermal buckling of simply supported functionally graded skew plates", Compos. Struct., 74(2), 247-250. https://doi.org/10.1016/j.compstruct.2005.04.004
- Ganapathi, M., Prakash, T. and Sundararajan N. (2006), "Influence of functionally graded material on buckling of skew plates under mechanical loads", J. Eng. Mech., 132(8), 902-905. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:8(902)
- Ghannadpour, S.A.M., Ovesy, H.R. and Nassirnia, M. (2012), "Buckling analysis of functionally graded plates under thermal loadings using the finite strip method", Comput. Struct., 108, 93-99.
- Gibson, L.J. Ashby, M.F., Karam, G.N., Wegst, U. and Shercliff, H.R. (1995), "Mechanical properties of natural materials. II. Microstructures for mechanical efficiency", Proceedings of Royal Society-A, 450, 141-162, July. https://doi.org/10.1098/rspa.1995.0076
- Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Hebali, H., Tounsi, A., Houari, M., Bessaim, A. and Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
- Javaheri, R. and Eslami, M.R. (2002), "Buckling of functionally graded plates under in-plane compressive loading", J. Appl. Math. Mech., 82(4), 277-283.
- Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates", AIAA J., 40(1), 162-169. https://doi.org/10.2514/2.1626
- Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stress., 25(7), 603-625. https://doi.org/10.1080/01495730290074333
- Kar, V.R. and Panda, S.K. (2015), "Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method", Compos. Struct., 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006
- Kar, V.R. and Panda, S.K. (2015), "Nonlinear thermomechanical deformation behaviour of P-FGM spherical shallow shell panel", Chinese J. Aeronautics, doi:10.1016/J.CJA.2015.12.007
- Lanhe, W. (2004), "Thermal buckling of a simply supported moderately thick rectangular FGM plate", Compos. Struct., 64(2), 211-218. https://doi.org/10.1016/j.compstruct.2003.08.004
- Mahapatra, T.R. and Panda, S.K. (2015a), "Nonlinear free vibration analysis of laminated composite spherical shell panel under elevated hygrothermal environment: A micromechanical approach", Aero. Sci. Technol., doi:10.1016/J.AST.2015.12.018
- Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2015b), "Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model", Mech. Adv. Mater. Struct., doi:10.1080/15376494.2015.1085606
- Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
- Mehar, K., Panda, S.K., Dehengia, A, and Kar V.R. (2015), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandwich Struct. Mater., doi:10.1177/1099636215613324.
- Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions" J. Sandwich Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
- Na, K.S. and Kim, J.H. (2004), "Three-dimensional thermal buckling analysis of functionally graded materials", Compos. Part B-Eng., 35(5), 429-437. https://doi.org/10.1016/j.compositesb.2003.11.013
- Panda, S.K. and Singh, B.N. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloidal shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-384. https://doi.org/10.1016/j.compstruct.2009.06.004
- Panda, S.K. and Singh, B.N. (2010a), "Nonlinear free vibration analysis of thermally post-buckled composite spherical shell panel", Int. J. Mech. Mater. Des., 6(2), 175-188. https://doi.org/10.1007/s10999-010-9127-1
- Panda, S.K. and Singh, B.N. (2010b), "Thermal post-buckling analysis of laminated composite spherical shell panel embedded with SMA fibres using nonlinear FEM", Proc. IMechE Part C: J. Mech. Eng. Sci., 224(4), 757-769.
- Panda, S.K. and Singh, B.N. (2011), "Large Amplitude Free Vibration Analysis of Thermally Post-buckled Composite Doubly Curved Panel using Nonlinear FEM", Finite Element. Anal. Des., 47(4), 378-386. https://doi.org/10.1016/j.finel.2010.12.008
- Panda, S.K. and Singh, B.N. (2013), "Nonlinear Finite Element Analysis of Thermal Post-buckling Vibration of Laminated Composite Shell Panel Embedded with SMA fibre", Aero. Sci. Technol., 29(1), 47-57. https://doi.org/10.1016/j.ast.2013.01.007
- Panda, S.K. and Singh, B.N. (2013a), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel embedded with SMA fibres", Nonlin. Dyn., 74(1-2), 395-418. https://doi.org/10.1007/s11071-013-0978-5
- Panda, S.K. and Singh, B.N. (2013b), "Thermal post-buckling analysis of laminated composite shell panel using NFEM", Mech. Based. Des. Struct. Mach., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330
- Panda, S.K. and Singh, B.N. (2013c), "Postbuckling analysis of laminated composite doubly curved panel embedded with SMA fibres subjected to thermal environment", Mech. Adv. Mater. Struct., 20(10), 842-853. https://doi.org/10.1080/15376494.2012.677097
- Pradyumna, S. and Bandyopadhyay, J.N. (2010), "Free vibration and buckling of functionally graded shell panels in thermal environments", Int. J. Struct. Stab. Dyn., 10(5), 1031-1053. https://doi.org/10.1142/S0219455410003889
- Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165
- Shahsiah, R. and Eslami, M.R. (2003), "Thermal buckling of functionally graded cylindrical shell", J. Therm. Stress., 26(3), 277-294. https://doi.org/10.1080/713855892
- Shariat, B.A.S. and Eslami, M.R. (2005), "Effect of initial imperfections on thermal buckling of functionally graded plates", J. Therm. Stress., 28(12), 1183-1198. https://doi.org/10.1080/014957390967884
- Shariat, B.A.S. and Eslami, M.R. (2006), "Thermal buckling of imperfect functionally graded plates", Int. J. Solids Struct., 43(14-15), 4082-4096. https://doi.org/10.1016/j.ijsolstr.2005.04.005
- Shariat, B.A.S. and Eslami, M.R. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos. Struct., 78(3), 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001
- Shariat, B.A.S., Javaheri, R. and Eslami, M.R. (2005), "Buckling of imperfect functionally graded plates under in-plane compressive loading", Thin-Wall. Struct., 43(7), 1020-1036. https://doi.org/10.1016/j.tws.2005.01.002
- Shen, H.S. (2009), Functionally Graded Material: Nonlinear Analysis of Plates and Shells, CRC press, Boca Raton, FL.
- Thai, H.T. and Choi, D.H. (2012), "An efficient and simple refined theory for buckling analysis of functionally graded plates", Appl. Math. Model., 36(3), 1008-1022. https://doi.org/10.1016/j.apm.2011.07.062
- Topal, U. and Uzman, U. (2009), "Thermal buckling load optimization of angle-ply laminated cylindrical shells", Int. J. Mater. Des., 30(3), 532-536.
- Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547
- Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aero. Sci. Tech., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
- Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Zhao, X.Y., Lee, Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90(2), 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005
- Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory", Aero. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
Cited by
- Thermal buckling analysis of functionally graded sandwich plates vol.41, pp.2, 2018, https://doi.org/10.1080/01495739.2017.1393644
- A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.047
- Non-linear fracture analysis of multilayered two-dimensional graded beams 2018, https://doi.org/10.1108/MMMS-09-2017-0107
- Buckling Analysis of Orthotropic Nanoscale Plates Resting on Elastic Foundations vol.55, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.55.42
- Nonlinear stability of CNT-reinforced composite cylindrical panels with elastically restrained straight edges under combined thermomechanical loading conditions pp.1530-7980, 2018, https://doi.org/10.1177/0892705718805134
- Non-linear delamination in two-dimensional functionally graded multilayered beam vol.9, pp.5, 2018, https://doi.org/10.1108/IJSI-12-2017-0079
- Size-dependent bending behavior of three-layered doubly curved shells: Modified couple stress formulation pp.1530-7972, 2018, https://doi.org/10.1177/1099636218793993
- Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals vol.5, pp.9, 2018, https://doi.org/10.1088/2053-1591/aad4c3
- An original single variable shear deformation theory for buckling analysis of thick isotropic plates vol.63, pp.4, 2017, https://doi.org/10.12989/sem.2017.63.4.439
- Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
- An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
- A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
- An original HSDT for free vibration analysis of functionally graded plates vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.735
- Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory vol.16, pp.2, 2016, https://doi.org/10.12989/gae.2018.16.2.141
- Improved HSDT accounting for effect of thickness stretching in advanced composite plates vol.66, pp.1, 2016, https://doi.org/10.12989/sem.2018.66.1.061
- A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory vol.21, pp.4, 2016, https://doi.org/10.12989/sss.2018.21.4.397
- Free vibration of FGM plates with porosity by a shear deformation theory with four variables vol.66, pp.3, 2016, https://doi.org/10.12989/sem.2018.66.3.353
- Three dimensional finite elements modeling of FGM plate bending using UMAT vol.66, pp.4, 2018, https://doi.org/10.12989/sem.2018.66.4.487
- Nonlinear spectral collocation analysis of imperfect functionally graded plates under end-shortening vol.66, pp.5, 2016, https://doi.org/10.12989/sem.2018.66.5.557
- Single variable shear deformation model for bending analysis of thick beams vol.67, pp.3, 2016, https://doi.org/10.12989/sem.2018.67.3.291
- A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/sss.2018.22.3.303
- Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory vol.28, pp.1, 2016, https://doi.org/10.12989/was.2019.28.1.019
- A novel refined shear deformation theory for the buckling analysis of thick isotropic plates vol.69, pp.3, 2019, https://doi.org/10.12989/sem.2019.69.3.335
- New insight into residual stresses in amine-grafted MWCNTs/binary resin composites under complex thermomechanical loadings vol.32, pp.11, 2016, https://doi.org/10.1177/0892705718797152
- Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory vol.25, pp.2, 2020, https://doi.org/10.12989/cac.2020.25.2.155
- A refined HSDT for bending and dynamic analysis of FGM plates vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.105
- Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures vol.42, pp.5, 2020, https://doi.org/10.1007/s40430-020-02314-5
- Thermal buckling analysis of functionally graded sandwich cylindrical shells vol.7, pp.4, 2016, https://doi.org/10.12989/aas.2020.7.4.335
- Thermal Buckling of Graphene Platelets Toughening Sandwich Functionally Graded Porous Plate with Temperature-Dependent Properties vol.12, pp.8, 2016, https://doi.org/10.1142/s1758825120500891
- The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory vol.10, pp.1, 2016, https://doi.org/10.12989/anr.2021.10.1.015
- Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2016, https://doi.org/10.12989/cac.2021.27.1.073
- Modal analysis of cylindrical panels at elevated temperatures under nonuniform heating conditions: Experimental investigation vol.235, pp.5, 2021, https://doi.org/10.1177/0954406220936738
- Analyzing the Thermal Post-Buckling of Composite Plate Containing an Elliptical Cut-Out Using a Particle Semi-Energy Method vol.21, pp.7, 2016, https://doi.org/10.1142/s0219455421500887
- Third-order electro-elastic analysis of sandwich doubly curved piezoelectric micro shells vol.49, pp.6, 2021, https://doi.org/10.1080/15397734.2019.1698435
- Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2016, https://doi.org/10.12989/scs.2021.40.5.697