DOI QR코드

DOI QR Code

Changes in the Mechanical Behavior of Thermal Barrier Coatings Caused by Thermal Shock

열충격에 의한 열차폐 코팅재의 기계적 거동 변화

  • Jang, Bin (School of Mechanical Systems Engineering, Kookmin University) ;
  • Lee, Kee Sung (School of Mechanical Systems Engineering, Kookmin University) ;
  • Kim, Tae Woo (School of Mechanical Systems Engineering, Kookmin University) ;
  • Kim, Chul (School of Mechanical Systems Engineering, Kookmin University)
  • 장빈 (국민대학교 기계시스템공학부) ;
  • 이기성 (국민대학교 기계시스템공학부) ;
  • 김태우 (국민대학교 기계시스템공학부) ;
  • 김철 (국민대학교 기계시스템공학부)
  • Received : 2016.11.03
  • Accepted : 2016.11.18
  • Published : 2017.01.27

Abstract

This study investigates changes in the mechanical behaviors, especially hardness and indentation load-displacement curves, of thermal barrier coatings (TBCs) brought about by thermal shock. The TBCs on the Nickel-based bondcoat/superalloy was prepared with diameters of 25.4 mm and $600{\mu}m$ thickness. The results of thermal shock cycling test from $1100^{\circ}C$ of the highest temperature indicate that the thermal shock do not influence on the mechanical behavior, but a continuous decrease in porosity and increase in hardness were observed after 1200 thermal shock cycles; these changes are believed to be due to sintering of thermal barrier coating materials. The results that no degradation in the indentation load-displacement curves indicate that the coating shows good thermal shock resistance up to 1200 cycles at $1100^{\circ}C$ in air.

Keywords

References

  1. S. Hada, K. Tsukagoshi, J. Masada and E. Ito, Mitsubishi Heavy Industries Technology Review, 49, 18 (2012).
  2. M. T. Kim, Y. C. Jung and D. Seo, Surf. Coat. Technol., 206, 4539 (2012). https://doi.org/10.1016/j.surfcoat.2012.03.061
  3. N. P. Padture, M. Gell and E. H. Jordan, Science, 296, 280 (2002). https://doi.org/10.1126/science.1068609
  4. N. S. Rudrapatria, B. H. Peterson and D. Greving, J. Eng. Gas Turbines Power, 133, 042013-1 (2011).
  5. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, Prog. Mater. Sci., 46, 505 (2001). https://doi.org/10.1016/S0079-6425(00)00020-7
  6. N. A. Fleck, A. C. F. Cocks and S. Lampenscnerf, J. Eur. Ceram. Soc., 34, 2687 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.01.002
  7. X. Zhong, H. Zhao, X. Zhou, C. Liu, L. Wang, F. Shao, K. Yang, S. Tao and C. Ding, J. Alloys Compd., 593, 50 (2014). https://doi.org/10.1016/j.jallcom.2014.01.060
  8. Y. Zhao, D. Li, X. Zhong, H. Zhao, L. Wang, F. Shao, C. Liu and S. Tao, Surf. Coat. Technol., 249, 48 (2014). https://doi.org/10.1016/j.surfcoat.2014.03.046
  9. J. Wu, N. P. Padture and M. Gell, Scr. Mater., 50, 1315 (2004). https://doi.org/10.1016/j.scriptamat.2004.02.020
  10. Z. Xu, L. He, R. Mu, X. Zhong, Y. Zhang, J. Zhang and X. Cao, J. Alloys Compd., 473, 509 (2009). https://doi.org/10.1016/j.jallcom.2008.06.064
  11. K. S. Lee, D. H. Lee and T. W. Kim, J. Ceram. Soc. Jpn., 122, 668 (2014). https://doi.org/10.2109/jcersj2.122.668
  12. S.-W. Myoung, J.-H. Kim, W.-R. Lee, Y.-G. Jung, K. S. Lee and U. Paik, Surf. Coat. Technol., 205, 1229 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.063
  13. K. S. Lee, I. C. Shin, B.-J. Kim and K. H. Lim, J. Korean Ceram. Soc., 52, 429 (2015). https://doi.org/10.4191/kcers.2015.52.6.429
  14. Z. Lu, S. S. Lee, J.-H. Lee and Y.-G. Jung, Korean J. Mater. Res., 25, 571 (2015). https://doi.org/10.3740/MRSK.2015.25.10.571
  15. D. H. Lee and K. S. Lee, J. Korean Ceram. Soc., 48, 396 (2011). https://doi.org/10.4191/kcers.2011.48.5.396
  16. B. R. Lawn, J. Am. Ceram. Soc., 81, 1977 (1998).
  17. K. S. Lee, K. I. Jung, Y. S. Heo, T. W. Kim, Y. G. Jung and U. Paik, J. Alloys Compd., 507, 448 (2010). https://doi.org/10.1016/j.jallcom.2010.07.196
  18. Y. S. Heo, D. H. Lee, Y.-G. Jung and K. S. Lee J. Nanomater ., Vol. 2015, Article ID 874190 9pages (2015).
  19. C. Chen, H. Guo, S. Gong, X. Zhao and P. Xiao, Ceram. Int., 39, 5093 (2013). https://doi.org/10.1016/j.ceramint.2012.12.005
  20. W. C. Oliver and G. M. Pharr, J. Mater. Res., 7, 1564 (1992). https://doi.org/10.1557/JMR.1992.1564
  21. A. C. Fischer-Cripps, Vacuum, 58, 569 (2000). https://doi.org/10.1016/S0042-207X(00)00377-8
  22. K. S. Lee, J.-G. Jung, I. M. Peterson, B. R. Lawn, D. K. Kim and S. K. Lee, J. Am. Ceram. Soc., 83, 2255 (2000).