Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.1.25

Changes in the Mechanical Behavior of Thermal Barrier Coatings Caused by Thermal Shock  

Jang, Bin (School of Mechanical Systems Engineering, Kookmin University)
Lee, Kee Sung (School of Mechanical Systems Engineering, Kookmin University)
Kim, Tae Woo (School of Mechanical Systems Engineering, Kookmin University)
Kim, Chul (School of Mechanical Systems Engineering, Kookmin University)
Publication Information
Korean Journal of Materials Research / v.27, no.1, 2017 , pp. 25-31 More about this Journal
Abstract
This study investigates changes in the mechanical behaviors, especially hardness and indentation load-displacement curves, of thermal barrier coatings (TBCs) brought about by thermal shock. The TBCs on the Nickel-based bondcoat/superalloy was prepared with diameters of 25.4 mm and $600{\mu}m$ thickness. The results of thermal shock cycling test from $1100^{\circ}C$ of the highest temperature indicate that the thermal shock do not influence on the mechanical behavior, but a continuous decrease in porosity and increase in hardness were observed after 1200 thermal shock cycles; these changes are believed to be due to sintering of thermal barrier coating materials. The results that no degradation in the indentation load-displacement curves indicate that the coating shows good thermal shock resistance up to 1200 cycles at $1100^{\circ}C$ in air.
Keywords
superalloy; coatings; thermal shock; mechanical properties; indentation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. Hada, K. Tsukagoshi, J. Masada and E. Ito, Mitsubishi Heavy Industries Technology Review, 49, 18 (2012).
2 M. T. Kim, Y. C. Jung and D. Seo, Surf. Coat. Technol., 206, 4539 (2012).   DOI
3 N. P. Padture, M. Gell and E. H. Jordan, Science, 296, 280 (2002).   DOI
4 N. S. Rudrapatria, B. H. Peterson and D. Greving, J. Eng. Gas Turbines Power, 133, 042013-1 (2011).
5 A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, Prog. Mater. Sci., 46, 505 (2001).   DOI
6 N. A. Fleck, A. C. F. Cocks and S. Lampenscnerf, J. Eur. Ceram. Soc., 34, 2687 (2014).   DOI
7 X. Zhong, H. Zhao, X. Zhou, C. Liu, L. Wang, F. Shao, K. Yang, S. Tao and C. Ding, J. Alloys Compd., 593, 50 (2014).   DOI
8 Y. Zhao, D. Li, X. Zhong, H. Zhao, L. Wang, F. Shao, C. Liu and S. Tao, Surf. Coat. Technol., 249, 48 (2014).   DOI
9 J. Wu, N. P. Padture and M. Gell, Scr. Mater., 50, 1315 (2004).   DOI
10 Z. Xu, L. He, R. Mu, X. Zhong, Y. Zhang, J. Zhang and X. Cao, J. Alloys Compd., 473, 509 (2009).   DOI
11 K. S. Lee, D. H. Lee and T. W. Kim, J. Ceram. Soc. Jpn., 122, 668 (2014).   DOI
12 S.-W. Myoung, J.-H. Kim, W.-R. Lee, Y.-G. Jung, K. S. Lee and U. Paik, Surf. Coat. Technol., 205, 1229 (2010).   DOI
13 K. S. Lee, I. C. Shin, B.-J. Kim and K. H. Lim, J. Korean Ceram. Soc., 52, 429 (2015).   DOI
14 Z. Lu, S. S. Lee, J.-H. Lee and Y.-G. Jung, Korean J. Mater. Res., 25, 571 (2015).   DOI
15 D. H. Lee and K. S. Lee, J. Korean Ceram. Soc., 48, 396 (2011).   DOI
16 B. R. Lawn, J. Am. Ceram. Soc., 81, 1977 (1998).
17 K. S. Lee, K. I. Jung, Y. S. Heo, T. W. Kim, Y. G. Jung and U. Paik, J. Alloys Compd., 507, 448 (2010).   DOI
18 Y. S. Heo, D. H. Lee, Y.-G. Jung and K. S. Lee J. Nanomater ., Vol. 2015, Article ID 874190 9pages (2015).
19 C. Chen, H. Guo, S. Gong, X. Zhao and P. Xiao, Ceram. Int., 39, 5093 (2013).   DOI
20 W. C. Oliver and G. M. Pharr, J. Mater. Res., 7, 1564 (1992).   DOI
21 A. C. Fischer-Cripps, Vacuum, 58, 569 (2000).   DOI
22 K. S. Lee, J.-G. Jung, I. M. Peterson, B. R. Lawn, D. K. Kim and S. K. Lee, J. Am. Ceram. Soc., 83, 2255 (2000).