• Title/Summary/Keyword: Thermal Lag Analysis

Search Result 34, Processing Time 0.025 seconds

A study of flow oscillations in a upright heated pipe (직립전열관에서의 유체진동에 관한 연구)

  • 박진길;진강규;오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.85-99
    • /
    • 1984
  • The stability of the two-phase flow in a heated channel is of great importance in the design and operation of the boilers and light water nuclear reactors, because it can cause flow oscillations and lead to a violation of thermal limits with resultant overheating of the channels and cladding. This paper presents a systematic evaluation to the variation effects of the basic four (4) dimensionless parameters in a homogeneous equilibrium model. The flow stability is examined on the ground of static characteristic curves. The complicated transfer function of flow dynamics which gives consideration to the transport lag of density wave is derived, and the transient flow stability is analysed by applying the Nyquist stability criterion in control engineering. The analysis results summed up as follows 1. The coolant flow becomes stable in large friction number and specific flow, while it is unstabale in small friction number and flow. 2. Large phase-change number and Froude number destabilize the two-phase flow, but small numbers stabilize it. The effect to variation of phase-change number is more dominant compared with Froude number. 3. The dynamic analysis is required to hold the sufficient safety of heated channels since only static results does not keep it. The special attention could be payed in the design and operation of heat engines, because the unstaable region exists within the stable boundary at small and middle phase-change number and Froude number.

  • PDF

An analytical Study for the Development of Highly Elastic Material applicable for Joint in Modular Pavement (모듈러 포장에 적용가능한 고탄성 연결재료 개발을 위한 해석적 연구)

  • Lee, Young-Ho;Kang, Su-Tae;Song, Jae-Joon;Lee, Sang-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5947-5955
    • /
    • 2013
  • This study was intended to estimate the axial deformation of joint between pavement modules in the rapid-constructible modular pavement system, and to investigate the applicability of two-phase composites for a joint material, which was composed of cement paste, epoxy, or polyurethane as a matrix and sand as particles. A case which had supports under the pavement module as well as a case which the module was put on roadbed directly were considered in FEM analysis for the axial deformation. The effect of self-weight, live load, thermal change, and drying shrinkage were estimated and the thermal change was found to cause the largest deformation compared to the others. Deformation capacity of two-phase composites was predicted using the modified shear-lag model. In the analytical results for the elastic modulus and maximum tensile strain with different volume fractions of sand, 20~30 % replacement of sand was revealed to satisfy the required strain capacity with economy when if the width of joint was designed to be 15~20 mm.

Characterization of Gas Permeation Properties of Polyimide Copolymer Membranes (공중합체 폴리이미드를 이용한 기체분리막의 특성평가)

  • Lee, Jung Moo;Lee, Myeong Geon;Kim, Se Jong;Koh, Hyung Chul;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.223-230
    • /
    • 2015
  • We synthesized novel polyimides with high gas permeability and selectivity for application of gas separation membrane. 2,2-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and two kinds of amines with high permeability and solubility were used to prepare the novel polymide. 2,4,6-Trimethyl-1,3-phenylenediamine (DAM) was used to improve gas permeability and 4,4-Methylenedianiline was used to improve the gas selectivity respectively. The polyimide copolymers were synthesized by commercial chemical imidization method using Triethylamine and Acetic anhydride and their average molecular weights were over 100,000 g/mol. The glass temperature (Tg) and the thermal degradation temperature were characterized using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The synthesized copolymers showed high Tg over $300^{\circ}C$ and high thermal degradation temperature over $500^{\circ}C$. The gas permeation properties were measured by time-lag equipment. Although general polyimides showed very low gas permeability, synthesized polyimide copolymer showed high $O_2$ permeability of 10.1 barrer with high $O_2/N_2$ selectivity around 5.3. From this result, we confirm that these membranes have possibility to apply to gas separation membrane.

Characterization of Gas Permeation Properties of Polyimide Copolymer Membranes for OBIGGS (OBIGGS용 공중합체 폴리이미드를 이용한 기체분리막의 투과 특성평가)

  • Lee, Jung Moo;Lee, Myung Gun;Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.325-331
    • /
    • 2014
  • We synthesized novel polyimides with high gas permeability and selectivity for application of on board inert gas generation system (OBIGGS). 2,2-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and two kinds of amines with high permeability and solubility were used to prepare the novel polymide. 2,3,5,6-Tetramethyl-1,4-phenylenediamine (TMPD) was used to improve gas permeability and various kinds of diamines were used to improve the gas selectivity respectively. The polyimide copolymers were synthesized by commercial chemical imidization method and their average molecular weights were over 100,000g/mol. The glass temperature ($T_g$) and the thermal degradation temperature were characterized using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The synthesized copolymers showed high $T_g$ over $300^{\circ}C$ and high thermal degradation temperature over $500^{\circ}C$. The gas permeation properties were measured by time-lag equipment. Although general polyimides showed very low gas permeability, synthesized polyimide copolymer showed high $O_2$ permeability of 36.21 barrer with high $O_2/N_2$ selectivity around 4.1. From this result, we confirm that these membranes have possibility to apply to OBIGGS.

A Tuning Method for the Power System Stabilizer of a Large Thermal Power Plant and Its Application to Real Power System : PART II - Field Tests and Verification of PSS Performance (대형 화력발전기 전력계통 안정화장치(IEEEST-PSS)의 정수선정 기법과 실계통 적용: PART II - PSS 현장 성능시험 절차 및 성능검증)

  • Shin, Jeong-Hoon;Nam, Su-Chul;Baek, Seung-Mook;Song, Ji-Young;Lee, Jae-Gul;Kim, Tae-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.114-121
    • /
    • 2011
  • This paper, as the second part of the paper, dealt with the field test and test results to validate PSS(Power System Stabilizer) parameters which are previously tuned in Part 1 paper. In Part 1 of the paper, the selection of parameters such as lead-lag time constants for phase compensation and system gain was optimized by using linear & eigenvalue analyses and they were verified through the time-domain transient stability analysis. In part 2, the performance of PSS was finally verified by the generator's on-line field test. Through the comparisons of simulation results and measured data before and after tuning of the PSS, the models of generator and its controllers including AVR, Governor and PSS used in the simulation are verified and confirmed.

The Influence of Global Sea Surface Temperature Anomalies on Droughts in the East Asia Monsoon Region

  • Awan, Jehangir Ashraf;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.224-224
    • /
    • 2015
  • The East Asia monsoon is one of the most complex atmospheric phenomena caused by Land-Sea thermal contrast. It plays essential role in fulfilling the water needs of the region but also poses stern consequences in terms of flooding and droughts. This study analyzed the influence of Global Sea Surface Temperature Anomalies (SSTA) on occurrence of droughts in the East Asia monsoon region ($20^{\circ}N-50^{\circ}N$, $103^{\circ}E-149^{\circ}E$). Standardized Precipitation Index (SPI) was employed to characterize the droughts over the region using 30-year (1978-2007) gridded rainfall dataset at $0.5^{\circ}$ grid resolution. Due to high variability in intensity and spatial extent of monsoon rainfall the East Asia monsoon region was divided into the homogeneous rainfall zones using cluster analysis method. Seven zones were delineated that showed unique rainfall regimes over the region. The influence of SSTA was assessed by using lagged-correlation between global gridded SSTA ($0.2^{\circ}$ grid resolution) and SPI of each zone. Sea regions with potential influence on droughts in different zones were identified based on significant positive and negative correlation between SSTA and SPI with a lag period of 3-month. The results showed that SSTA have the potential to be used as predictor variables for prediction of droughts with a reasonable lead time. The findings of this study will assist to improve the drought prediction over the region.

  • PDF

A Study for Reduction of Combustion Noise in Diesel Engine by Wiebe's Combustion Function (Wiebe 燃燒函數에 의한 디이젤機關 의 燃燒騷音低減 에 관한 硏究)

  • 이성노;궁본등;촌산정;노상순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.548-554
    • /
    • 1985
  • This research is to find a means of reducing diesel engine combustion noise with none or minimum sacrifice of engine performance by investigating the influence of Cylinder Pressure Level(CPL). For this purpose, modified Wiebe's combustion function, considering the heat release curve as a combustion of both premixed and diffusive combustion portion, was exclusively used to obtain the indicator diagram and computer coeds were developed for the numerical analysis. Following are the results of this research. (1) CPL increases almostly with lag of ignition timing increasing .alpha. and decreasing. theta.$_{d}$, but at the crank angle with the maximal efficiency, CPL is independent of .alpha. and .theta.$_{d}$ with constant value of 200 dB especially at the low frequency. (2) For the constant ignition timing, the effects of .alpha. and .theta.$_{d}$ on CPL were the most significant at the frequency of about 1KHz and 300Hz respectively. (3) For the constant value of .alpha. and .theta.$_{d}$, CPL increases linearly with load but thermal efficiency increase very rapidly with maximum value of load Q$_{T}$=30-40 MJ/Kmol, then starts to decrease slowly. (4) The most effective way of reducing combustion noise without sacrificing thermal efficiency, is to decrease .alpha.. In the case of constant .alpha., there always exists a optimum value of .theta.$_{d}$ with respect to the various compression ratio.o..atio.o..

A Tuning Method for the Power System Stabilizer of a Large Thermal Power Plant and Its Application to Real Power System : Part I-Selection of Parameters by Off-line Simulation (대형 화력발전기 전력계통 안정화장치의 정수선정 기법과 실계통 적용 : PART I-오프라인 해석을 통한 PSS 정수 선정)

  • Shin, Jeong-Hoon;Lee, Jae-Gul;Nam, Su-Chul;Choy, Young-Do;Kim, Tae-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.191-200
    • /
    • 2009
  • This paper, which consists of two parts, dealt with the parameter tuning of the power system stabilizer for a 612[MVA] thermal power plant in KEPCO system and its validation in field test. In Part 1 of the paper, the selection of parameters such as lead-lag time constants for phase compensation, system gain was optimized by using linear & eigenvalue analyses and they were verified through the time-domain transient stability analysis. In part 2, the performance of PSS was finally verified by the generator's on-line field test. Through the comparisons of simulation results and measured data before and after tuning of the PSS, the models of generator and its controllers including AVR, Governor and PSS used in the simulation are validated and confirmed.

Analysis of the Effect of Korea's Environmentally Harmful Subsidy Reform in the Electric Power Sector : Mainly on its Industrial Cross-subsidies Reform (우리나라 전력부문의 환경유해보조금 개편 효과분석 : 산업용 교차보조금 개편을 중심으로)

  • Kang, Man-Ok;Hwang, Uk
    • Journal of Environmental Policy
    • /
    • v.9 no.1
    • /
    • pp.57-81
    • /
    • 2010
  • Since the Republic of Korea is highly dependent on fossil fuels despite high oil prices, it urgently needs to renew its economic and social system to cut carbon emissions and achieve green growth. Therefore, reforming or eliminating subsidies related to the use of fossil fuels is a timely and oppropriate policy recommendation for Korea. It would be a win-win deal for Korean society as it would not only reduce the use of environmentally harmful fossil fuels but also enhance economic efficiency. In particular, cross-subsidies for industrial, agricultural and night thermal-storage power services make up more than 80 percent of all subsidies provided to the entire electric power industry sector of Korea. Of these cross-subsidies, this paper analyzes the electricity subsidy for industries, which takes up the largest share (about KRW 1.6583 trillion yearly), among the environmentally harmful subsidies in the electric power sector. Thus, the paper focuses on the analysis of ripple effect anticipated when this is reformed. To examine the effects of this subsidy reform, price elasticities were estimated using the ARDL (autoregressive distributed lag) model and quarterly data from 1990 to 2007. The main results of this study show that 1) annual energy demand for electric power in the industrial sector would drop by 12,475,930MWh and 2) $CO_2$ emissions would plummet by 2,644,897 tons per year if the subsidy were reformed. We can deduct from this that the abolition of environmentally harmful subsidies in the electric power sector in the Republic of Korea would considerably contribute to $CO_2$ emissions abatement in the country.

  • PDF

Chemical Reactions in the Coal-Methane-Air Flame (석탄화염내 화학반응에 관한 연구)

  • 박호영;안달홍;김종진
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.166-177
    • /
    • 2002
  • The present study is described of the flame structure of one-dimensional, flat, premixed, laminar, coal-air flame with some addition of methane for the flame stability. A low pressure burner operating at a combustion pressure of 0.3 arm was employed in order to extend the reaction zone. Predicted results from the models considered in the present study are compared with experimental results. Comparisons are included gas temperatures, species concentrations, char analysis and measured burning velocity. Among the models, Model II $I^{*}$-d, which specified devolatilization rate constants and a char surface area factor S=4, resulted in good agreement within the present experimental ranges. The results of char analysis suggest that the extent of the reaction occurring on the panicle might be underestimated in the model so that the char surface area should be increased. A value of 4 for this factor was given by sensitivity analysis of change in char surface area. Again, model II $I^{*}$-d gave satisfactory predictions of burning velocities over most of the experimental range studied. It has been clearly shown that the particle diameter appreciably affects the rates of devolatilisation and char oxidation through the effects of thermal lag and volumetric reactive surface area, consequently laminar burning velocity.ity.