Chemical Reactions in the Coal-Methane-Air Flame

석탄화염내 화학반응에 관한 연구

  • 박호영 (한국전력 전력연구원·연소신발전그룹) ;
  • 안달홍 (한국전력 전력연구원·연소신발전그룹) ;
  • 김종진 (한국전력 전력연구원·연소신발전그룹)
  • Published : 2002.06.01

Abstract

The present study is described of the flame structure of one-dimensional, flat, premixed, laminar, coal-air flame with some addition of methane for the flame stability. A low pressure burner operating at a combustion pressure of 0.3 arm was employed in order to extend the reaction zone. Predicted results from the models considered in the present study are compared with experimental results. Comparisons are included gas temperatures, species concentrations, char analysis and measured burning velocity. Among the models, Model II $I^{*}$-d, which specified devolatilization rate constants and a char surface area factor S=4, resulted in good agreement within the present experimental ranges. The results of char analysis suggest that the extent of the reaction occurring on the panicle might be underestimated in the model so that the char surface area should be increased. A value of 4 for this factor was given by sensitivity analysis of change in char surface area. Again, model II $I^{*}$-d gave satisfactory predictions of burning velocities over most of the experimental range studied. It has been clearly shown that the particle diameter appreciably affects the rates of devolatilisation and char oxidation through the effects of thermal lag and volumetric reactive surface area, consequently laminar burning velocity.ity.

본 연구는 화염안정을 위해 약간의 메탄을 첨가한 1차원, Hat, 예혼합, 층류 석탄-공기 화염구조에 관한 연구로서 반응영역을 늘리기 위해 0.3 atm에서 운전되는 저압버너를 사용하였다. 본 연구에서는 가스 온도, 주요가스의 농도, 샘플된 촤의 분석과 화염속도에 대하여 여러 모델들의 해석결과를 실험결과와 서로 비교하였다. 여러 모델중 촤 표면적 지수(S=4)와 휘발성분에 대해 각각의 탈휘발화 속도상수를 적용한 model II $I^{*}$ -d가 실험치와 비교적 일치함을 보여주었다. 샘플된 촤의 분석 결과 입자의 반응이 낮게 예측되어져 촤 표면적지수를 증가시켜야만 했다. 이 지수는 촤의 반응 표면적에 대한 민감도 분석으로부터 얻어진 결과였고 model II $I^{*}$ -d의 화염속도 해석결과는 대부분의 측정치에 근접한 결과를 보여주고 있다. 고체 입자 직경은 열적 지연과 반응표면적을 통하여 탈휘발화율과 촤 산화에 큰 영향을 주며 이는 곧 화염속도에 영향을 주고 있음을 보여주었다.

Keywords

References

  1. Journal of The Institute of Fuel, Paper No. 28 Some measurements of the burning velocity of coal-in-air suspensions Burgoyne J.H.;Long V.D.
  2. J. Inst. Fuel v.37 Particle Size Effects and Flame Propagation Rate Control in Laminar Dust Flames Marshall, W.F.;Palmer, H.B.;Seery, D.H.
  3. 11th Symposium (International) on Combustion, The Combustion Institute Mechanism of Solid-Particle Combustion with Simulation Gas-Phase Volatiles Combustion Howard, J.B.;Essenhigh, R.H.
  4. Tenth AIAA/SAE Propulsion Conference Coal dust combustion and supression Strehlow, R.A.;Savage, L.D.;Sorensen, S.C.
  5. 16th Symposium (International) on Combustion, The Combustion Institute Combustion and flame propagation in coal systems : A review Essenhigh, R. H.
  6. Progress in Energy and Combustion science v.5 Coal dust flames : A review and development of a model for flame propagation Kranzinski J. L.;Buckius R. O.;Krier H.
  7. Progress in Energy and Combustion Science v.3 Propagation of laminar pulverised coal-air flames Smoot, L.D.;Horton, M.D.
  8. Combustion and Flame v.124 The Structure of coal-air-$CH_4$ Laminar flames in a low-pressure burner: CARS measurements and modeling studies Bradley, D.;Lawes, D.;Scott, M.J.;Usta, N.
  9. Combustion Measurements Chigier, N.
  10. Fuel v.62 Mathematical Models of the Thermal Decompostion of Coal 1. Evolution of volatile matter Merrick, D.
  11. Energy and Fuel v.10 Flashchain theory for rapid coal devolatilisation kinetics. 7. Predicting the release of oxygen species from various coals Niksa, S.
  12. Progress in Energy and Combustion Science v.18 Coal Pyrolysis: Experiments, Kinetic Rates and Mechanisms Solomon, P.R.;Serio, M.A.;Suuberg E.M.
  13. Combustion and Flame v.86 Oxidation Rates of Carbon Particles in Methane-Air flames Dixon-Lewis, G.;Bradley, D.;Habik, S.
  14. 26th Symposium (International) on Combustion Conversion of coal tar to soot during coal pyrolysis in a post-flame environment Ma, J.;Fletcher, T.H.;Webb, B.W.
  15. Archivum combustion v.7 Burning of Coal and Organic Dusts in Air Dixon-Lewis, G.;Bradley, D.;Habik, S.
  16. Combustion Chemistry Dixon-Lewis, G.
  17. Ind. Eng. Chem. Proc. Design Dev v.9 Kinetics of thermal decomposition of pulverised coal particles Badzioch, S.;Hawksley, P.G.W.
  18. Combustion and Flame v.78 Time-resolved particle temperature and mass loss measurements of a bituminous coal during devolatilisation Fletcher, T.H.
  19. Energy and Fuels v.1 Kinetics of Volatile Product Evolution in Coal Pyrolysis: Experiment and Theory Serio, M.A.;Hamblen, D.G.;Markham, J.R.;Solomon, P.R.
  20. 20th Symposium (International) on Combustion Kinetics of rapid pyrolysis of a calcium-exchanged brown coal and of a calcium model compound Doolan, K.R.;Mackie, J.C.
  21. Combustion and Flame v.55 Fuel-Nitrogen Transformation in One-Dimensional Coal-Dust Flames Peck, R.E.;Altenkirch, R.A.;Midkiff, K.C.
  22. 17th Symposium (International) on Combustion Product Compositions and Formation Kinetics in Rapid Pyrolysis of Pulverised Coal Implications form Combustion Suuberg, E.M.;Peters, W.A.;Howard, J.B.
  23. Fuel v.67 A Study of the Mechanism of the Rapid Pyrolysis of Single Particles of Coal Johnson, G.R.;Murdoch, P.;Williams, A.