Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.325

Characterization of Gas Permeation Properties of Polyimide Copolymer Membranes for OBIGGS  

Lee, Jung Moo (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Lee, Myung Gun (Aekyung Petrochemical Co., LTD.)
Kim, Deuk Ju (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Publication Information
Membrane Journal / v.24, no.4, 2014 , pp. 325-331 More about this Journal
Abstract
We synthesized novel polyimides with high gas permeability and selectivity for application of on board inert gas generation system (OBIGGS). 2,2-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and two kinds of amines with high permeability and solubility were used to prepare the novel polymide. 2,3,5,6-Tetramethyl-1,4-phenylenediamine (TMPD) was used to improve gas permeability and various kinds of diamines were used to improve the gas selectivity respectively. The polyimide copolymers were synthesized by commercial chemical imidization method and their average molecular weights were over 100,000g/mol. The glass temperature ($T_g$) and the thermal degradation temperature were characterized using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The synthesized copolymers showed high $T_g$ over $300^{\circ}C$ and high thermal degradation temperature over $500^{\circ}C$. The gas permeation properties were measured by time-lag equipment. Although general polyimides showed very low gas permeability, synthesized polyimide copolymer showed high $O_2$ permeability of 36.21 barrer with high $O_2/N_2$ selectivity around 4.1. From this result, we confirm that these membranes have possibility to apply to OBIGGS.
Keywords
Polyimide; Diamine; Chemical imidazation; Gas separation; Permeability;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. P. Kim, B. Y. Yeom, and B. R. Min, "Tech-trend for polymeric gas separation membranes", Polymer Science and Technology, 16, 436 (2005).
2 D. Y. Oh and S. Y. Nam, "Developmental trend of polyimide membranes for gas separation", Membrane Journal, 21, 307 (2011).
3 D. J. Kim and S. Y. Nam, "Research and development trends of polyimide based material for gas separation", Membrane Journal, 23, 393 (2013).   DOI   ScienceOn
4 J. H. Ahn, W. J. Chung, I. Pinnau, and M. D. Guiver, "Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation", J. Membr. Sci., 314, 123 (2008).   DOI   ScienceOn
5 B. Kruczek and T. Matsuura, "Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance", J. Membr. Sci., 167, 203 (2000).   DOI   ScienceOn
6 M. R. Coleman and W. J. Koros, "Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications", J. Membr. Sci., 50, 285 (1990).   DOI   ScienceOn
7 C. H. Jung, J. E. Lee, S. H. Han, H. B. Park, and Y. M. Lee, "Highly permeable and selective poly (benzoxazole-co-imide) membranes for gas separation", J. Membr. Sci., 350, 301 (2010).   DOI
8 T. S. Chung, W. H. Lin, and R. H. Vora, "Gas transport properties of 6FDA-durene/1,3-phenylenediamine (mPDA) copolyimides", J. Appl. Polym. Sci., 81, 3552 (2001).   DOI
9 E. H. Kim, C. Y. Park, and J. H. Kim, "Gas Transport Properties of Soluble Polyimides Containing Alicyclic Dianhydride", Membrane Journal, 24, 100 (2014).   DOI
10 L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991).   DOI   ScienceOn
11 E. H. Kim, C. Y. Park, and J. H. Kim, "Large improvement of the lower detection limit of ion-selective polymer membrane electrodes", J. Am. Chem. Soc., 119, 11347 (1997).   DOI
12 X. Duthie, S. Kentish, C. Powell, K. Nagai, G. Qiao, and G. Stevens, "Operating temperature effects on the plasticization of polyimide gas separation membranes", J. Membr. Sci., 294, 40 (2007).   DOI
13 L. Wang, Y. Cao, M. Zhou, S. J. Zhou, and Q. Yuan, "Novel copolyimide membranes for gas separation", J. Membr. Sci., 305, 338 (2007).   DOI
14 Y. Woo, S. Y. Oh, Y. S. Kang, and B. S. Jung, "Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell", J. Membr. Sci., 220, 31 (2003).   DOI
15 Y. Liu, R. Wang, and T. S. Chung, "Chemical cross-linking modification of polyimide membranes for gas separation", J. Membr. Sci., 189, 231 (2001).   DOI   ScienceOn
16 J. Yin, Y. F. Ye, and Z. G. Wang, "Study on preparation and properties of polyimides containing long flexible chains in the backbone", Eur. Polym. J., 34, 1839 (1998).   DOI
17 C. Nagel, K. Gunther-Schade, D. Fritsch, T. Strunskus, and F. Faupel, "Free volume and transport properties in highly selective polymer membranes", Macromolecules, 35, 2071 (2002).   DOI
18 S. Xiao, R. Y. M. Huang, and X. Feng, "Synthetic 6FDA-ODA copolyimide membranes for gas separation and pervaporation: Functional groups and separation properties", Polymer, 48, 5355 (2007).   DOI
19 Y. Yang, Z. K. Zhu, J. Yin, X. Y. Wang, and Z. E. Qi, "Preparation and properties of hybrids of organo-soluble polyimide and montmorillonite with various chemical surface modification methods", Polymer, 40, 4407 (1999).   DOI   ScienceOn
20 J. Kruse, J. Kanzow, K. Ratzke, F. Faupel, M. Heuchel, J. Frahn, and D. Hofmann, "Free volume in polyimides: positron annihilation experiments and molecular modeling", Macromolecules, 38, 9638 (2005).   DOI
21 K. R. Lee, D. J. Liaw, B. Y. Liaw, and J. Y. Lai, "Sorption and transport properties of gases in fluoro-containing aromatic polyamide membranes", Eur. Polym. J., 34, 665 (1998).   DOI