• Title/Summary/Keyword: Thermal Coupling

Search Result 433, Processing Time 0.022 seconds

Magnetic Properties of Sn1-xFexO2 Thin Films and Powders Grown by Chemical Solution Method

  • Li, Yong-Hui;Shim, In-Bo;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.161-164
    • /
    • 2009
  • Iron-doped $Sn_{1-x}Fe_xO_2$ (x = 0.0, 0.05, 0.1, 0.2, 0.33) thin films on Si(100) substrates and powders were prepared by a chemical solution process. The x-ray diffraction (XRD) patterns of the $Sn_{1-x}Fe_xO_2$ thin films and powders showed a polycrystalline rutile tetragonal structure. Thermo gravimetric (TG) - differential thermal analysis (DTA) showed the final weight loss above $430{^{\circ}C}$ for all powder samples. According to XRD Rietveld refinement of the powders, the lattice parameters and unit cell volume decreased with increasing Fe content. The magnetic properties were characterized using a vibrating sample magnetometer (VSM) and M$\ddot{o}$ssbauer spectroscopy. The thin film samples with x = 0.1 and 0.2 showed paramagnetic properties but thin films with x = 0.33 exhibited ferromagnetic properties at room temperature. Mossbauer studies revealed the $Fe^{3+}$ valence state in the samples. The ferromagnetism in the samples can be interpreted in terms of the direct ferromagnetic coupling of ferric ions via an electron trapped in a bridging oxygen deficiency, which can be explained using the F-center exchange model.

Marangoni Convection Instability of a Liquid Floating Zone in a Simulated Microgravity (모사된 미세중력장내 액체부유대에서의 Marangoni대류의 불안정성)

  • 이진호;이동진;전창덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.456-466
    • /
    • 1994
  • Experimental investigation was made to study the mechanism of fluid and thermal oscillation phenomena of surface-tension driven flow in a cylindrical liquid column heated from above which is the low-gravity floating zone simulated on earth. Hexadecane, octadecane, silicon oil (10cs), FC-40 and water are used as the test liquids. The onset of the oscillatory thermocapillary convection appears when Marangoni number exceeds its criteria value and is found to be due to the coupling among velocity and temperature field with the free surface deformation. The frequency of temperature oscillation decreases with increasing aspect ratio for a given diameter and Marangoni number and the oscillation level increases with Marangoni number. The flow pattern in the liquid column appears either as symmetric or asymmetric 3-D flow due to the oscillatory flow in the azimuthal direction. The free surface deformation also occurs either as symmetric or asymmetric mode and its frequency is consistent with those of flow and temperature oscillations. The amplitude of surface deformation also increases with Marangoni number.

Gas Transport Behavior of Polydopamine-Coated Composite Membranes (폴리도파민/미세다공성 복합막의 기체투과특성)

  • Kim, Hyo Won;Park, Ho Bum
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • Recently, a novel coating method using an aqueous doapmine solution was proposed, the deposited coating was found to have extraordinarily strong-adhesion to numerous materials such as metal and polymers. However, it has suffered from many controversy in scientific fields due to its final structure and deposited mechanisms. Here, we have proposed a new structure for final dopamine product coupling with solid state spectroscopic, thermal behavior, and gas transport behaviors of dopamine coated microporous polyethersulfone membranes. In its final analysis, the results represented that it is a supramolecular aggregated of monomers consisting of 5,6-dihydroxyindoline and its derivative in contrast to previously proposed polymeric structure.

Papers : Thermally Induced Vibration Analysis of Flexible Spacecraft Appendages (논문 : 위성체 유연 구조물의 열진동 해석)

  • Yun,Il-Seong;Song,O-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.56-64
    • /
    • 2002
  • Thermally induced vibration response of composite thin-walled beams is investigated in this paper. The flexible spacecraft appendages modeled as thin-walled beam incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constitute materials. Thermally induced vibration responds characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending lagwise bending coupling resulting from directioal properties of fiber reinforced composite materials and ply stacking sequence. A coupled thermal structure gradient is investigated.

An Evaluation of Numerical Schemes in a RANS-based Simulation for Gaseous Hydrogen/Liquid Oxygen Flames at Supercritical Pressure (초임계 압력하의 기체수소-액체산소 화염에 대한 난류모델을 이용한 해석에서 수치기법 평가)

  • Kim, Won Hyun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.21-29
    • /
    • 2013
  • Turbulent flow and thermal fields of gaseous hydrogen/liquid oxygen flames at supercritical pressure are investigated by turbulence models. The modified Soave-Redlich-Kwong (SRK) EOS is implemented into the flamelet model to realize real-fluid combustions. For supercritical fluid flows, the modified pressure-velocity-density coupling are introduced. Based on the algorithm, the relative performance of six convection schemes and the predictions of four turbulence models are compared. The selected turbulence models are needed to be modified to consider various characteristics of real-fluid combustions.

A Numerical Study on the Flow and Heat Transfer Characteristics of Plastic Plate Heat Exchanger (플라스틱 판형 열교환기의 유동 및 열전달 특성에 관한 수치해석적 연구)

  • Chung, Min-Ho;Yoo, Seong-Yeon;Han, Kyu-Hyun;Yoon, Hong-Ik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1366-1371
    • /
    • 2008
  • Four simulation models of plastic plate heat exchangers are designed and simulated. The flat plate type heat exchanger is designed as the reference model in order to evaluate how much thermal performance increases. The turbulence promoter type heat exchanger is fabricated with cylindrical-type vortex generators and rib-type turbulence promoters. The corrugate type is obtained from the conventional stainless steel compact heat exchangers, which are called the herringbone-type compact heat exchangers. The dimple type heat exchanger has a number of dimples on its surface. In this study, the flow and heat transfer characteristics of the plastic plate heat exchanger are investigated using numerical simulation and compared with experimental results. The flows are assumed as a three-dimensional, incompressible and turbulent model. The standard k-$\varepsilon$ model is used as the turbulent flow modeling, the SIMPLE algorithm is used to treat the coupling between pressure and velocity, and first order upwind scheme is used for discretization of momentum, turbulent and energy. The computational analysis and experimental results both show that the friction coefficient and Nu number is highest in the corrugate type.

  • PDF

Implementation of LED Module Using MCPCB with Hard Barrier Anodizing Oxide Layer (경장벽 산화막 절연층 MCPCB를 이용한 LED 모듈 구현)

  • Hong, Dae-Woon;Lee, Sung-Jae;Cho, Jae-hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.4
    • /
    • pp.236-240
    • /
    • 2009
  • LED modules, based on MCPCB with a hard barrier oxide layer and an improved thermal dissipation property, are presented. Reflecting cups were also formed on the surface of the MCPCB such that optical coupling between neighboring chips was minimized for improving the photon absorption loss. LED chips were directly attached on the MCPCB by using the COB (Chip On Board) scheme. The LED modules showed significantly enhanced light outputs, compared to the LED modules based on conventional MCPCBs.

ACCURACY AND EFFICIENCY OF A COUPLED NEUTRONICS AND THERMAL HYDRAULICS MODEL

  • Pope, Michael A.;Mousseau, Vincent A.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.885-892
    • /
    • 2009
  • This manuscript will discuss a numerical method where the six equations of two-phase flow, the solid heat conduction equations, and the two equations that describe neutron diffusion and precursor concentration are solved together in a tightly coupled, nonlinear fashion for a simplified model of a nuclear reactor core. This approach has two important advantages. The first advantage is a higher level of accuracy. Because the equations are solved together in a single nonlinear system, the solution is more accurate than the traditional "operator split" approach where the two-phase flow equations are solved first, the heat conduction is solved second and the neutron diffusion is solved third, limiting the temporal accuracy to $1^{st}$ order because the nonlinear coupling between the physics is handled explicitly. The second advantage of the method described in this manuscript is that the time step control in the fully implicit system can be based on the timescale of the solution rather than a stability-based time step restriction like the material Courant limit required of operator-split methods. In this work, a pilot code was used which employs this tightly coupled, fully implicit method to simulate a reactor core. Results are presented from a simulated control rod movement which show $2^{nd}$ order accuracy in time. Also described in this paper is a simulated rod ejection demonstrating how the fastest timescale of the problem can change between the state variables of neutronics, conduction and two-phase flow during the course of a transient.

A Benzodithiophene-based Semiconducting Polymer for Organic Thin Film Transistor

  • Hong, Jung-A;Kim, Ran;Yun, Hui-Jun;Park, Joung-Man;Shin, Sung Chul;Kim, Yun-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1170-1174
    • /
    • 2013
  • Benzodithiophene based organic semiconducting polymer was designed and synthesized by stille coupling reaction. The structure of polymer was confirmed by NMR and IR. The weight average molecular weight ($M_w$) of polymer was 8,400 using GPC with polydispersity index of 1.4. The thermal, optical and electrochemical properties of polymer were characterized by TGA and DSC, UV-vis absorption and cyclic voltammetry. OTFT device using PBDT-10 exhibited the mobility of $7.2{\times}10^{-5}\;cm^2\;V^{-1}\;s^{-1}$ and $I_{on}/I_{off}$ of $2.41{\times}10^3$. The film morphology and crystallinity of PBDT-10, was studied using AFM and XRD.

A Numerical Study of The Motion of a Circular Cylinder Suspended in a Square Enclosure (사각 밀폐계 내 자연대류에 의한 원형 실린더의 운동 특성에 관한 수치적 연구)

  • Son, Seong-Wan;Jeong, Hea-Kown;Ha, Man-Yeong;Yoon, Hyun-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.727-734
    • /
    • 2010
  • The present study numerically investigates the motion of a solid body suspended in the square enclosure with natural convection. A two-dimensional circular cylinder levitated thermally has been simulated by using thermal lattice Boltzmann method(TLBM) with the direct-forcing immersed boundary method. To deal with the ascending, falling or levitation of a circular cylinder in natural convection, the immersed boundary method is expanded and coupled with the TLBM. The circular cylinder is located at the bottom of a square enclosure with no restriction on the motion and freely migrates due to the Boussinesq approximation which is employed for the coupling between the flow and temperature fields. For different density ratio between the cylinder and the fluid, the motion characteristics of the circular cylinder for various Grashof numbers have been carried out. The Prandtl number is fixed as 0.7.