DOI QR코드

DOI QR Code

An Evaluation of Numerical Schemes in a RANS-based Simulation for Gaseous Hydrogen/Liquid Oxygen Flames at Supercritical Pressure

초임계 압력하의 기체수소-액체산소 화염에 대한 난류모델을 이용한 해석에서 수치기법 평가

  • 김원현 (경북대학교 기계공학부) ;
  • 박태선 (경북대학교 기계공학부)
  • Received : 2012.11.28
  • Accepted : 2013.03.26
  • Published : 2013.06.01

Abstract

Turbulent flow and thermal fields of gaseous hydrogen/liquid oxygen flames at supercritical pressure are investigated by turbulence models. The modified Soave-Redlich-Kwong (SRK) EOS is implemented into the flamelet model to realize real-fluid combustions. For supercritical fluid flows, the modified pressure-velocity-density coupling are introduced. Based on the algorithm, the relative performance of six convection schemes and the predictions of four turbulence models are compared. The selected turbulence models are needed to be modified to consider various characteristics of real-fluid combustions.

초임계조건의 기체수소/액체산소 화염의 난류유동 및 온도장에 대해 난류모델을 이용한 해석이 수행되었다. 실제유체의 연소유동을 해석하기 위하여 화염편모델에 SRK 상태방정식이 도입되었다. 수정된 압력-속도-밀도 연계알고리듬이 초임계유동에 적용되었다. 수정된 알고리듬을 토대로 6개의 대류항 차분법과 4개의 난류모델의 상대적인 성능비교가 이루어졌다. 선택된 난류모델들은 실제유체 연소유동의 다양한 특징을 고려하기 위해서 수정이 필요함을 나타내었다.

Keywords

References

  1. Schmitt, T., Selle, L., Cuenot, B., and Poinsot, T., "Large-eddy simulation of transcritical flows," C. R. Mecanique, Vol. 337, 2009, pp.528-538 https://doi.org/10.1016/j.crme.2009.06.022
  2. Cutrone, L., De Palma, P., Pascazio G., and Napolitano, M., "A RANS flameletprogress- variable method for computing reacting flows of real-gas mixtures," Computers and Fluid, Vol. 39, 2010, pp.485-498 https://doi.org/10.1016/j.compfluid.2009.10.001
  3. Kim, T., Kim, Y., and Kim, S. K., "Real-fluid flamelet modeling for gaseous hydrogen/cryogenic liquid oxygen jet flames at supercritical pressure," The J. Supercritical Fluids, Vol. 58, 2011, pp.254-262 https://doi.org/10.1016/j.supflu.2011.05.020
  4. 김성구, 최환석, 박태선, "액체로켓 분사기 해석을 위한 실제유체 기반의 난류연소모델 개발," 한국추진공학회 2010년도 춘계학술대회 논문집, pp.150-155
  5. Park, T. S., "Effect of time-integration method in a large eddy simulation using PISO algorithm: Part I - flow field," Numer. Heat Transfer Part A, Vol. 50, 2006, pp.229-245 https://doi.org/10.1080/10407780600602374
  6. Park, T. S., "Effect of time-integration method in a large eddy simulation using PISO algorithm: Part II - thermal field," Numer. Heat Transfer Part A, Vol. 50, 2006, pp.247-262 https://doi.org/10.1080/10407780600602234
  7. Park, T. S., "LES and RANS simulations of cryogenic liquid nitrogen jets," The Journal of Supercritical Fluids, Vol. 72, 2012, pp.232-247 https://doi.org/10.1016/j.supflu.2012.09.004
  8. Launder, B. E. and Spalding, D. B., "The numerical computation of turbulent flows," Computer Methods in Applied Mechanics and Engineering, Vol. 3, 1974, pp.269-289 https://doi.org/10.1016/0045-7825(74)90029-2
  9. Yang, Z. and Shih, T. H., "New time scale based ${\kappa}$${\varepsilon}$ model for near-wall turbulence," AIAA J., Vol. 31, 1993, pp.1191-1198 https://doi.org/10.2514/3.11752
  10. Abe, K., Kondoh, T., and Nagano Y., "A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flow," Int. J. Heat and Mass Transfer, Vol. 37, 1994, pp.139-151 https://doi.org/10.1016/0017-9310(94)90168-6
  11. Park, T. S., Sung, H. J., and Suzuki, K., "Development of a nonlinear near-wall turbulence model for turbulent flow and heat transfer," Int. J. Heat and Fluid Flow, Vol. 24, 2003, pp.29-40 https://doi.org/10.1016/S0142-727X(02)00211-4
  12. Li, J., Zhao, Z., Kazakov, A., and Dryer F. L., "An updated comprehensive kinetic model of hydrogen combustion," Int. J. Chemical Kinetics, Vol. 36, 2004, pp.566-575 https://doi.org/10.1002/kin.20026
  13. Soave, G., "Equilibrium constants from a modified Redlich-Kwong equation of state," Chemical Engineering Science, Vol. 37, 1972, pp.1197-1203
  14. Ferziger, J. H. and Peric, M., Computational methods for fluid dynamics, 3rd ed., Springer, 2002
  15. Zhu J., "On the Higher-Order Bounded Discretization Schemes for Finite Volume Computations of Incompressible Flows," Computer Methods in Applied Mechanics and Engineering, Vol. 98, 1992, pp.345-360 https://doi.org/10.1016/0045-7825(92)90003-3
  16. Leonard, B. P., "A stable and accurate convection modeling procedure based on quadratic upstream interpolation," Computer Methods in Applied Mechanics and Engineering, Vol. 19, 1979, pp.59-98. https://doi.org/10.1016/0045-7825(79)90034-3
  17. Lele, S. K., "Compact finite difference schemes with spectral-like resolution," J. Comput. Phys. Vol. 103, 1992, pp.16-42 https://doi.org/10.1016/0021-9991(92)90324-R
  18. Juniper, M., "Structure and stabilization of cryogenic spray flames," PhD thesis, Ecole Centrale Paris, 2001
  19. Candel, S., Juniper, M., Singla G., and Scouflaire P., Rolon C., "Structure and dynamics of cryogenic flames at supercritical pressure," Combustion Science and Technology, Vol. 178, 2006, pp.161-192 https://doi.org/10.1080/00102200500292530

Cited by

  1. Numerical Analysis of Recess Effects on Gaseous Hydrogen/Liquid Oxygen Coaxial Injector vol.20, pp.3, 2016, https://doi.org/10.6108/KSPE.2016.20.3.017