Gas Transport Behavior of Polydopamine-Coated Composite Membranes

폴리도파민/미세다공성 복합막의 기체투과특성

  • Kim, Hyo Won (WCU Department of Energy Engineering Hanyang University) ;
  • Park, Ho Bum (WCU Department of Energy Engineering Hanyang University)
  • 김효원 (한양대학교 에너지공학과) ;
  • 박호범 (한양대학교 에너지공학과)
  • Received : 2013.04.08
  • Accepted : 2013.04.18
  • Published : 2013.04.30

Abstract

Recently, a novel coating method using an aqueous doapmine solution was proposed, the deposited coating was found to have extraordinarily strong-adhesion to numerous materials such as metal and polymers. However, it has suffered from many controversy in scientific fields due to its final structure and deposited mechanisms. Here, we have proposed a new structure for final dopamine product coupling with solid state spectroscopic, thermal behavior, and gas transport behaviors of dopamine coated microporous polyethersulfone membranes. In its final analysis, the results represented that it is a supramolecular aggregated of monomers consisting of 5,6-dihydroxyindoline and its derivative in contrast to previously proposed polymeric structure.

최근 큰 각광을 받고 있는 표면개질소재 중 하나인 도파민은 알칼리 수용액상에서 자발적으로 반응이 진행되어 금속, 고분자 등 거의 모든 소재에 강하게 흡착되는 물질로 흡착 메커니즘 및 반응 후 최종구조에 관해 많은 논란이 있다. 기존의 도파민의 최종구조는 aryl-aryl 결합에 의한 고분자 구조가 제안되었지만, 본 연구에서는 구조분석을 통해 기존에 제안된 aryl-aryl 결합이 형성되지 않는 결과와 열적거동을 통해 고분자의 특징이 나타나지 않는 것을 확인하였으며, 기체투과거동을 통해 고분자와 같이 비다공성 코팅층을 형성하지 못하는 결과를 토대로, 도파민의 최종구조는 2차 결합에 의한 초분자 구조로 서로 응집되어 있는 것으로 판단된다.

Keywords

References

  1. H. Lee, S. M. Dellartore, W. M. Miller, and P. B. Messersmith, "Mussel-inspired surface chemistry for multifunctional coatings", Science, 318, 426 (2007). https://doi.org/10.1126/science.1147241
  2. H. Lee, J. Rho, and P. B. Messersmith, "Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings", Adv. Mater. 21, 431 (2009). https://doi.org/10.1002/adma.200801222
  3. J. Ou, J. Wang, S. Liu, J. Zhou, S, Ren, and S. Yang, "Microtribological and electrochemical corrosion behaviors of polydopamine coating on APTSSAM modified Si substrate", Appl. Surf. Sci. 256, 894 (2009). https://doi.org/10.1016/j.apsusc.2009.08.081
  4. S. H. Ku, J. Ryu, S. K. Hong, H. Lee, and C. B. Park, "General functionalization route for cell adhesion on non-wetting surfaces", Biomaterials, 31, 2535 (2010). https://doi.org/10.1016/j.biomaterials.2009.12.020
  5. W. Ye, H. Hu, H. Zhang, F. Zhou, and W. Liu, "Multi-walled carbon nanotube supported Pd and Pt nanoparticles with high solution affinity for effective electrocatalysis", Appl. Surf. Sci., 256, 6723 (2010). https://doi.org/10.1016/j.apsusc.2010.04.080
  6. B. D. McCloskey, H. B. Park, B. W. Rowe, D. J. Miller, B. J. Chun, K. Kin, and B. D. Freeman, "Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes", Polymer, 51, 3472 (2010). https://doi.org/10.1016/j.polymer.2010.05.008
  7. E. Faure, C. Falentin-Daudre, C. Jerome, J. Lyskawa, D. Fournier, P. Woisel, and C. Detrembleur, "Catechols as versatile platfomrs in polymer chemistry", Prog. Polym. Sci., 38, 236 (2013). https://doi.org/10.1016/j.progpolymsci.2012.06.004
  8. D. R. Dreyer, D. J. Miller, B. D. Freeman, and D. R. Paul, "Elucidating the structure of poly(dopamine)", Langmuir, 28, 6428 (2012). https://doi.org/10.1021/la204831b
  9. Q. Wei, F. Zhang, J. Li, B. Li, and C. Zhao, "Oxidantinduced dopamine polymerization for multifunctional coatings", Polym. Chem., 1, 1430 (2010). https://doi.org/10.1039/c0py00215a
  10. F. Bernsmann, V. Ball, F. Addiego, A. Ponche, M. Michel, J. J. A. Gracio, V. Toniazzo, and D. Ruch, "Dopamine-melanin film deposition depends on the used oxidant and buffer solution", Langmuir, 27, 2819 (2011). https://doi.org/10.1021/la104981s
  11. H. R. Allcock, F. W. Lampe, and J. E. Mark, "Contemporary polymer chemistry", Pearson Education Inc., (2004).
  12. J. I.Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, "Graphene oxide dispersions in organic solvents", Langmuir, 24, 10560 (2008). https://doi.org/10.1021/la801744a
  13. Y. Shi, S. Li, Y. Zhou, Q. Zhai, M Hu, F. Cai, J. Du, J. Liang, and X. Zhu, "Facile preparation of luminescent and interlligent gold nanodots based on supramolecular self-assembly", Nanotechnology, 23, 485603 (2012). https://doi.org/10.1088/0957-4484/23/48/485603
  14. J. Emsley, "Very strong hydrogen bonding" Chem., Soc., Rev. 9, 91-124 (1980). https://doi.org/10.1039/cs9800900091
  15. D. R. Poul and Y. P. Yampol'skii, "Polymeric gas separation membranes", CRC press (1994).
  16. Y. J. Cho and H. B. Park, "High performance polyimide with high internal free volume elements.", Macromol. Rapid. Comm., 32, 579 (2011). https://doi.org/10.1002/marc.201000690
  17. H. B. Park, et al. "Polymers with cavities tuned for fast selective transport of small molecules and ions", Science, 318, 254 (2007). https://doi.org/10.1126/science.1146744
  18. N. Y. Du, et al. "Polymer nanosieve membranes for $CO_2$-capture applications", Nat. Mater., 10, 372 (2011). https://doi.org/10.1038/nmat2989
  19. H. W. Kim, B. D. McCloskey, T. H. Choi, C. H. Lee, M. J. Kim, B. D. Freeman and H. B. Park, "Oxygen concentration control of dopamine-induced high uniformity surface coating chemistry", Appl. Mater. Interfaces, 5, 233 (2013). https://doi.org/10.1021/am302439g
  20. M. Mulder, "Basic principle of membrane technology", Kluwer Academic Publishers (1999).