DOI QR코드

DOI QR Code

Magnetic Properties of Sn1-xFexO2 Thin Films and Powders Grown by Chemical Solution Method

  • Published : 2009.12.31

Abstract

Iron-doped $Sn_{1-x}Fe_xO_2$ (x = 0.0, 0.05, 0.1, 0.2, 0.33) thin films on Si(100) substrates and powders were prepared by a chemical solution process. The x-ray diffraction (XRD) patterns of the $Sn_{1-x}Fe_xO_2$ thin films and powders showed a polycrystalline rutile tetragonal structure. Thermo gravimetric (TG) - differential thermal analysis (DTA) showed the final weight loss above $430{^{\circ}C}$ for all powder samples. According to XRD Rietveld refinement of the powders, the lattice parameters and unit cell volume decreased with increasing Fe content. The magnetic properties were characterized using a vibrating sample magnetometer (VSM) and M$\ddot{o}$ssbauer spectroscopy. The thin film samples with x = 0.1 and 0.2 showed paramagnetic properties but thin films with x = 0.33 exhibited ferromagnetic properties at room temperature. Mossbauer studies revealed the $Fe^{3+}$ valence state in the samples. The ferromagnetism in the samples can be interpreted in terms of the direct ferromagnetic coupling of ferric ions via an electron trapped in a bridging oxygen deficiency, which can be explained using the F-center exchange model.

Keywords

References

  1. Y. Matsumoto, M. Murakami, T. Shono, and T. Hasegawa, Science 291, 854 (2001) https://doi.org/10.1126/science.1056186
  2. K. J. Kim, Y. R. Park, G. Y. Ahn, and C. S. Kim, J. Magnetics 11, 12 (2006) https://doi.org/10.4283/JMAG.2006.11.1.012
  3. D. Karmakar, S. K. Mandal, R. M. Kadam, P. L. Paulose, A. K. Rajarajan, T. K. Nath, A. K. Das, I. Dasgupta, and G. P. Das, Phys. Rev. B 75, 144404 (2007) https://doi.org/10.1103/PhysRevB.75.144404
  4. W. Wang, Z. Wang, Y. Hong, J. Tang, and M. Yu, J. Appl. Phys. 99, 08M115 (2006) https://doi.org/10.1063/1.2171940
  5. K. Nomura, C. A. Barrero, J. Sakuma, and M. Takeda, Phys. Rev. B 75, 184411 (2007) https://doi.org/10.1103/PhysRevB.75.184411
  6. A. Punnoose, J. Hats, V. Gopal, and V. Shutthanandan, Appl. Phys. Lett. 85, 1559 (2004) https://doi.org/10.1063/1.1786633
  7. H. M. Lee and C. S. Kim, J. Appl. Phys. 101, 09H110 (2007) https://doi.org/10.1063/1.2710459
  8. J. F. Liu, M. F. Nu, P. Chai, L. Fu, Z. L. Wang, X. Q. Cao, and J. Meng, J. Magn. Magn. Mater. 317, 1 (2007) https://doi.org/10.1016/j.jmmm.2007.02.206
  9. J. M. D. Coey, A. P. Douvalis, C. F. Fitzgerald, and M. Venkatesan, Appl. Phys. Lett. 84, 1322 (2004) https://doi.org/10.1063/1.1650041
  10. R. Adhikari, A. K. Das, D. Karmakar, T. V. Chandrasekhar Rao, and J. Ghatak, Phys. Rev. B 78, 024404 (2008) https://doi.org/10.1103/PhysRevB.78.024404
  11. A. Punnoose, J. Hys, A. Thurber, M. H. Engelhard, R. K. Kukkadapu, C. Wang, V. Shutthanandan, and S. Thevuthasan, Phys. Rev. B 72, 054402 (2008) https://doi.org/10.1103/PhysRevB.72.054402
  12. S. I. Park, K. R. Choi, T. Kouh, and C. S. Kim, J. Magnetics 12, 137 (2007) https://doi.org/10.4283/JMAG.2007.12.4.137
  13. K. Nomura, C. A. Barrero, J. Sakuma, and M. Takeda, Phys. Rev. B 77, 184411 (2007) https://doi.org/10.1103/PhysRevB.75.184411