• Title/Summary/Keyword: Thermal Conducting Solid

Search Result 22, Processing Time 0.022 seconds

The Effect of Lithia Addition on the Sodium Ion Conductivity of Vapor Phase Converted Na-β"-alumina/YSZ Solid Electrolytes

  • Sasidharanpillai, Arun;Kim, Hearan;Cho, Yebin;Kim, Dongyoung;Lee, Seungmi;Jung, Keeyoung;Lee, Younki
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.191-200
    • /
    • 2022
  • Na-β"-Al2O3 has been widely employed as a solid electrolyte for high-temperature sodium (Na) beta-alumina batteries (NBBs) thanks to its superb thermal stability and high ionic conductivity. Recently, a vapor phase conversion (VPC) method has been newly introduced to fabricate thin Na-β"-Al2O3 electrolytes by converting α-Al2O3 into β"-Al2O3 in α-Al2O3/yttria-stabilized zirconia (YSZ) composites under Na+ and O2- dual percolation environments. One of the main challenges that need to be figured out is lowered conductivity due to the large volume fraction of the non-Na+-conducting YSZ. In this study, the effect of lithia addition in the β"-Al2O3 phase on the grain size and ionic conductivity of Na-β"-Al2O3/YSZ solid electrolytes have been investigated in order to enhance the conductivity of the electrolyte. The amount of pre-added lithia (Li2O) precursor as a phase stabilizer was varied at 0, 1, 2, 3, and 4 mol% against that of Al2O3. It turns out that ionic conductivity increases even with 1 mol% lithia addition and reaches 67 mS cm-1 at 350 ℃ of its maximum with 3 mol%, which is two times higher than that of the undoped composite.

Joining and Performance of Alkali Metal Thermal-to-electric Converter (AMTEC) (알칼리금속 열전기변환장치의 접합과 출력성능)

  • Suh, Min-Soo;Lee, Wook-Hyun;Woo, Sang-Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.665-671
    • /
    • 2017
  • The alkali-Metal Thermal-to-electric Converter (AMTEC) is one of the promising static energy conversion technologies for the direct conversion of thermal energy to electrical energy. The advantages over a conventional energy converter are its high theoretical conversion efficiency of 40% and power density of 500 W/kg. The working principle of an AMTEC battery is the electrochemical reaction of the sodium through an ion conducting electrolyte. Sodium ion pass through the hot side of the beta"-alumina solid electrolyte (BASE) primarily as a result of the pressure difference. This pressure difference across the BASE has a significant effect on the overall performance of the AMTEC system. In order to build the high pressure difference across the BASE, hermeticity is required for each joined components for high temperature range of $900^{\circ}C$. The AMTEC battery was manufactured by utilizing robust joining technology of BASE/insulator/metal flange interfaces of the system for both structural and electrical stability. The electrical potential difference between the anode and cathode sides, where the electrons emitted from sodium ionization and recombined into sodium, was characterized as the open-circuit voltage. The efforts of technological improvement were concentrated on a high-power output and conversion efficiency. This paper discusses about the joining and performance of the AMTEC systems.

All-Solid-State Ion-Selective Electrodes With Organic Solvents Soluble Conducting Polymer for Chemical Sensor (화학센서를 위한 유기 용해성이 좋은 도전성 고분자가 포함된 전체 고체상태 이온 선택성 전극에 대한 연구)

  • Kim, Joong-Il;Park, Jong-Ho;Jang, Won;Heo, Min;Na, Young-Ho;Shin, Jae-Ho;Kim, Do-Young;Um, Hwan-Sub;Lee, Sang-Woo;Kim, In-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.258-263
    • /
    • 2013
  • New conducting polymers containing heterocyclic ring with carbazole, EDOT and benzobisthiazole were synthesized and characterized by organic spectroscopic methods. Potentiometric ion-selective membrane electrodes (ISMEs) have been extensively used for ion analysis in clinical, environmental, and industeial fields owing to its wide response range (4 to 7 orders of magnitude), no effect of sample turbidity, fast response time, and ease of miniaturization. Considerable attention has been given to alternative use of room temperature vulcanizing (RTV)-type silicone rubber(SR) owing to its strong adhesion and high thermal durability. Unfortunately, the high membrane resistance of SR-based (ISMs)(2 to 3 higher orders of magnitude compared to those of poly(vinyl chloride)(PVC)-based ones) has significantly restricted its application. Herein we demonstrate a new method to reduce membrane resistance via addition of new conducting polymer into the SR-based ISMs.

Preparation of Proton-Conducting Gd-Doped Barium Cerate by Oxalate Coprecipitation Method

  • Yong Sung Choi;Soo Man Sim
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.213-221
    • /
    • 1998
  • $BaCe_{0.9}Gd_{0.1_O_{2.95}$ powder was synthesized by oxalate coprecipitation method. Precipitate with a stoichimetric ratio of the cations was prepared by adding a mixture of Ba, Ce and Gd nitrate solution to an oxalic acid solution at pH 4. Reaction between the constituent oxides to form a perovskite phase was initiated at $800^{\circ}C$ and a single phase $BaCe_{0.9}Gd_{0.1_O_{2.95}$ powder having good sinterability was obtained after calcination at $1000^{\circ}C$. Sintering green compacts of this powder for 6 h showed a considerable densification to start at $1100^{\circ}C$ and resulted in 93% and 97% relative densities at $1300^{\circ}$ and at $1450^{\circ}C$, respectively. Whereas the power compacts prepared by solid state reaction had lower relative densities, 78% at $1300^{\circ}$and 90% at $1450^{\circ}C$. Fine particles of $CeO_2$ second phase were observed in the surface of the sintered compacts. This was attributed to the evaporation of BaO from the surface that had been exposed during thermal etching.

  • PDF

Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heterooolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis (PSf-co-PPSS/HPA를 이용한 수소제조 수전해용 고체 고분자 전해질 복합 막의 제조)

  • Jung, Yun-Kyo;Lee, Hyuck-Jae;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Proton conducting solid polymer electrolyte (SPE) membranes have been used in many energy technological applications such as water electolysis, fuel cells, redox-flow battery, and other electrochemical devices. The availability of stable membranes with good electrochemical characteristics as proton conductivity at high temperatures above 80 $^{\circ}C$ and low cost are very important for its applications. However, the presently available perfluorinated ionomers are not applicable because of high manufacturing cost and high temperature use to the decrease in the proton conductivity and mechanical strength. In order to make up for the weak points, the block copolymer (BPSf) of polysulfone and poly (phenylene sulfide sulfone) were synthesized and sulfonated. The electrolyte membranes were prepared with phosphotungstic acid (HPA)/sulfonated BPSf via solution blending. This study would be desirable to investigate the interaction between the HPA and sulfonated polysulfone. The results showed that the characteristics of SPSf/HPA blend membrane was a better than Nafion at high temperature, 100 $^{\circ}C$. These membranes proved to have a high proton conductivity, $6.29{\times}10-2$ S/cm, a water content, 23.9%, and a ion exchange capacity, 1.97 meq./g dry membrane. Moreover, some of the membranes kept their high thermal and mechanical stability.

Microstructures and Electrical Conducting Properties of $Gd_24$O_3$-$Y_2$$O_3$-$CeO_2$Solid Electrolyte ($Gd_24$O_3$-$Y_2$$O_3$-$CeO_2$계 고체 전해질의 미세구조 및 전기전도 특성)

  • 장복기;신동선;임용무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.44-49
    • /
    • 1999
  • In this study, microstructure and electrical conductivity of {(G $d_2$ $O_3$)$_{0.75}$( $Y_2$ $O_3$)$_{0.25}$}$_{x}$ (Ce $O_2$)$_{1-x}$ (0.01$\leq$x$\leq$0.25) was investigated as a function of composition x. GYO addition(x) increased the bulk density and G $d_2$ $O_3$ was found to be monoclinic at x>0.15. From the change of the lattice parameter with the addition(x), GYO solution limit for ceria was exceeded in the range of x=0.05 to 0.09. Thermal expansion coefficient(15~17$\times$10$^{-6}$ $^{\circ}C$) of GYC samples at x=0.01 to 0.07 was higher in value than that of 8YSZ(10.8$\times$10$^{-6}$ $^{\circ}C$). The electrical conductivity of GYC samples at x=0.05 showed the maximum(0.01S/cm) in value at 1073K which was 2 times higher than that of 8YSZ. The activation energy for the electrical conduction was determined to be 0.60eV in the temperature range of 1073K.3K..3K.

  • PDF

Melt-solid interface and segregation in horizontal bridgman growth using 2 - and 3 - dimensional pseudo - steady - state model (2차원 및 3차원 정상상태 모델에 의한 수평브릿지만 결정성장에서의 고 - 액 계면과 편석)

  • 민병수;김도현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.306-317
    • /
    • 1995
  • Abstract Gallium arsenide crystal is usually grown from the melt by the horizontal Bridgman method. We constructed pseudo - steady - state model for crystal growth of GaAs which inclue melt, crystal and the free interface. Mathematical equations of the model were solved for flow, temperature, and concentration field in the melt and temperature field in the crystal. The location and shape of the interface were also solved simultaneously. In 2 - dimensional model, the shape of the interface is flat with adiabatic thermal boundary condition, but it becomes curved with completely conducting thermal boundary condition. In 3 - dimensional model, the interface is less curved than 2 - dimensional case and the flow intensity is similar to that of 2 - dimensional case. With the increase of flow intensity vertical segregation shows maximum value in both 2 - and 3 - D model. However, the maximum value occurs in lower flow intensity in 2 - D model because the interface is more curved for the same flow intensity.

  • PDF

Cathode materials advance in solid oxide fuel cells (고체산화물연료전지 공기극의 재료개발동향)

  • Son, Young-Mok;Cho, Mann;Nah, Do-Baek;Kil, Sang-Cheol;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • A solid oxide fuel cells(SOFC) is a clean energy technology which directly converts chemical energy to electric energy. When the SOFC is used in cogeneration then the efficiency can reach higher than 80%. Also, it has flexibility in using various fuels like natural gases and bio gases, so it has an advantage over polymer electrolyte membrane fuel cells in terms of fuel selection. A typical cathode material of the SOFC in conjunction with yttria stabilized zirconia(YSZ) electrolyte is still Sr-doped $LaMnO_3$(LSM). Recently, application of mixed electronic and ionic conducting perovskites such as Sr-doped $LaCoO_3$(LSCo), $LaFeO_3$(LSF), and $LaFe_{0.8}Co_{0.2}O_3$(LSCF) has drawn much attention because these materials exhibit lower electrode impedance than LSM. However, chemical reaction occurs at the manufacturing temperature of the cathode when these materials directly contact with YSZ. In addition, thermal expansion coefficient(TEC) mismatch with YSZ is also a significant issue. It is important, therefore, to develop cathode materials with good chemical stability and matched TEC with the SOFC electrolyte, as well as with high electrochemical activity.

Physical Properties of the Nonstoichiometric Perovskite $Dy_{1-x}Sr_xCoO_{3-y}$ System

  • 정수경;김민규;김규홍;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.794-798
    • /
    • 1996
  • Solid solutions of the nonstoichiometric Dy1-xSrxCoO3-y system with the compositions of x=0.00, 0.25, 0.50, 0.75, and 1.00 have been synthesized by the solid state reaction at 1000 ℃ under atmospheric air pressure. The crystallographic structures of the solid solutions are analyzed by the powder X-ray diffraction patterns at room temperature. The analyses assign the compositions of x=0.00 and 0.25 to the orthorhombic system with space group of Pbnm/D2h16, the compositions of x=0.50 and 0.75 to the tetragonal system like a typical SrCoO2.86, and the composition of x=l.00 or SrCoO2.50 to the brownmillerite type system with space group of I**a. The reduced lattice volumes increase with x value due to the larger radius of Sr2+ ion than that of Dy3+ ion. The mole ratio of Co4+ ion to total Co ion with mixed valence state between Co3+ and Co4+ ions at B sites or τ value has been determined by an iodometric titration. All the samples except for the DyCoO3 compound show the mixed valnce state and thus the composition of x=0.50 has the maximum τ value in the system. The oxygen vacancies increasing with x value are randomly distributed over the crystal lattice except for the composition of x=l.00 which have the ordering of the oxygen vacancies. The nonstoichiometric chemical formulas of the Dy1-xSrxCo3+1-τCo4+τO3-(x-τ)/2 system are formulated from the x, τ, and y values. The electrical conductivity in the temperature range of 100 to 900 K increases with τ value linearly because of positive holes of the Co4+ ions in π* band as a conducting carrier. The activation energy of the x=0.50 as Ea=0.17 eV is minimum among other compouds. Broad and high order transition due to the overlap between σ* and π* bands broadened by the thermal activation is observed near 1000 K and shows a low temperature-semiconducting behavior. Magnetic properties following the Currie-Weiss law show the low to high spin transition in the cobaltate perovskite. Especially, the composition of x=0.75 presents weak ferromagnetic behavior due to the Co3+-O2--Co4+ indirect superexchange interaction.

The study of drawing on the heterogeneous materials for the unidirectional alignment of carbon nanofiber in metal matrix nanocomposite (금속기지 나노복합재용 탄소나노섬유 일방향 배열을 위한 이종재 인발 연구)

  • 백영민;이상관;엄문광;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.301-301
    • /
    • 2003
  • In current study, Nanocomposites are reinforced with carbon nanofiber, carbon nanotube and SiC, etc. Since the nano reinforcements have the excellent mechanical, thermal and electrical properties compared with that of existing composites, it has lately attracted considerable attention in the various areas. Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties. Until now, strengthening of the copper alloy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the alloy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conducting material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the cooer matrix composites of high strength and electric conductivity. In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process and align mechanism as well as optimized drawing process parameter are verified via numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of 10∼20$\mu\textrm{m}$ in length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper. it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber Optimal parameter for drawing process was obtained by analytical and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc. The lower drawing angles and lower reduction areas provides the less rupture of co tube is noticed during the drawing process and the better alignment of carbon nanofiber is obtained.

  • PDF