Browse > Article

Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heterooolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis  

Jung, Yun-Kyo (Dep. of Chemical Engineering, Myongji Univ.)
Lee, Hyuck-Jae (Dep. of Chemical Engineering, Myongji Univ.)
Jang, In-Young (Dep. of Chemical Engineering, Myongji Univ.)
Hwang, Gab-Jin (Hydrogen Energy Research Center, Korea Institute of Energy Research)
Bae, Ki-Kwang (Hydrogen Energy Research Center, Korea Institute of Energy Research)
Sim, Kyu-Sung (Hydrogen Energy Research Center, Korea Institute of Energy Research)
Kang, An-Soo (Dep. of Chemical Engineering, Myongji Univ.)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.16, no.2, 2005 , pp. 103-110 More about this Journal
Abstract
Proton conducting solid polymer electrolyte (SPE) membranes have been used in many energy technological applications such as water electolysis, fuel cells, redox-flow battery, and other electrochemical devices. The availability of stable membranes with good electrochemical characteristics as proton conductivity at high temperatures above 80 $^{\circ}C$ and low cost are very important for its applications. However, the presently available perfluorinated ionomers are not applicable because of high manufacturing cost and high temperature use to the decrease in the proton conductivity and mechanical strength. In order to make up for the weak points, the block copolymer (BPSf) of polysulfone and poly (phenylene sulfide sulfone) were synthesized and sulfonated. The electrolyte membranes were prepared with phosphotungstic acid (HPA)/sulfonated BPSf via solution blending. This study would be desirable to investigate the interaction between the HPA and sulfonated polysulfone. The results showed that the characteristics of SPSf/HPA blend membrane was a better than Nafion at high temperature, 100 $^{\circ}C$. These membranes proved to have a high proton conductivity, $6.29{\times}10-2$ S/cm, a water content, 23.9%, and a ion exchange capacity, 1.97 meq./g dry membrane. Moreover, some of the membranes kept their high thermal and mechanical stability.
Keywords
Sulfonated polysulfone; poly(phenylene sulfide sulfone); HPA; Water electolysis; Proton conductivity; Ion exchanger;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Zschocke and D. Quellmalz : 'Novel ion exchange membrane based on an aromatic polyethersulfone', J. Memb. Sci., Vol. 22, 1985, p. 325   DOI   ScienceOn
2 P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang, and S. Kaliaguine : 'Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes', J. Memb. Sci. Vol. 229, 2004, p. 95   DOI   ScienceOn
3 P. C. Pieke and N. E. Vanderborgh : 'Temperature dependence of water content and proton conductivity in polyperfluorosulfonic acid membranes', J. Membr. Sci., Vol. 32, 1987, p. 31l   DOI   ScienceOn
4 X. Glipa, M. E. Haddad, D. J. Jones, and J. Roziere : 'Synthesis and characterisation of sulfoned polybenzimidazole a highly conducting proton exchange polymer', Solid State lon, Vol. 97, 1997, p. 323   DOI   ScienceOn
5 C. Genies, R. Mercier, B. Sillion, N. Comet, G. Gebel, and M. Pineri 'Soluble sulfonated naphthalenic polyimides as materials for proton exchange membrane', Polymer, Vol. 42, 2002, p. 359   DOI   ScienceOn
6 M. Mulder : 'Basic principles of membrane technology', Kluwer academ. publishers, Boston, 1996
7 D. G. Baird, J. Huang, and J. E. McGrath: 'Polymer electrolyte membrane fuel cell', Plastic Eng., Vol. 59, 2003, p. 46
8 J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, and M. Litt: 'Acid-Doped Polybenzimidazoles : A New Polymer Electrolyte', J. Electrochem. Soc., Vol. 142, 1995, p. L121   DOI   ScienceOn
9 K. Miyatake, H. Zhou, and M. Watanabe : 'Proton conductive polyimide electrolytes containing fluorenyl groups: synthesis, properties and branching effect', Macromolecules, Vol. 37, 2004, p. 4956   DOI   ScienceOn
10 H. B. Park, and Y. M. Lee : 'Polymer electrolyte membrane for fuel cell', J. Korea Ind. Eng. Chem., Vol. 13, No.1, 2002, p. 1
11 S. I. Jung, C. H. Ryo, A. S. Kang, and H. S. Lee : 'Manufacture and Current/Voltage Characteristics of Bipolar Membrane with Polysulfone', J. Korea. Ind. Eng. Chem. Vol. 14(1), 2004, p. 95
12 Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, and J. E. McGrath : 'Fabrication and characterization of heteropolyacid/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications', J. Memb. Sci., Vol. 212, 2003, p. 263   DOI   ScienceOn
13 P. Genova-Dimitrova, B. Baradie. , D. Foscallo, C. Poinsignon, and J.Y. Sanchez : 'Ionomeric membranes for proton exchange membrane fuel cell: sulfonated polysulfone associated with phosphatoantimonic acid', J. Memb. Sci. Vol. 185, 2001, p. 59   DOI   ScienceOn
14 J. M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, and N. Ogata : 'Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells', Solid State lonics, Vol. 147, 2002, p. 189   DOI   ScienceOn
15 T. A. Zawodzinski Jr., T. E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, and S. Gottesfeld : 'Water uptake by and transport through nation 117 membranes', Vol. 140, 1993, p. 1041   DOI   ScienceOn
16 J. Larminie and A. Dicks : 'Fuel cell system explained'; John Wiley & Sons, Ltd: New York, 2000
17 NAFION Product Bulletin, DuPont Company, www.Dupont.com