Browse > Article
http://dx.doi.org/10.5229/JKES.2022.25.4.191

The Effect of Lithia Addition on the Sodium Ion Conductivity of Vapor Phase Converted Na-β"-alumina/YSZ Solid Electrolytes  

Sasidharanpillai, Arun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Kim, Hearan (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Cho, Yebin (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Kim, Dongyoung (Semiconductor R&D Center, Samsung Electronics)
Lee, Seungmi (Battery Materials Division, Research Institute of Industrial Science and Technology (RIST))
Jung, Keeyoung (Battery Materials Division, Research Institute of Industrial Science and Technology (RIST))
Lee, Younki (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Publication Information
Journal of the Korean Electrochemical Society / v.25, no.4, 2022 , pp. 191-200 More about this Journal
Abstract
Na-β"-Al2O3 has been widely employed as a solid electrolyte for high-temperature sodium (Na) beta-alumina batteries (NBBs) thanks to its superb thermal stability and high ionic conductivity. Recently, a vapor phase conversion (VPC) method has been newly introduced to fabricate thin Na-β"-Al2O3 electrolytes by converting α-Al2O3 into β"-Al2O3 in α-Al2O3/yttria-stabilized zirconia (YSZ) composites under Na+ and O2- dual percolation environments. One of the main challenges that need to be figured out is lowered conductivity due to the large volume fraction of the non-Na+-conducting YSZ. In this study, the effect of lithia addition in the β"-Al2O3 phase on the grain size and ionic conductivity of Na-β"-Al2O3/YSZ solid electrolytes have been investigated in order to enhance the conductivity of the electrolyte. The amount of pre-added lithia (Li2O) precursor as a phase stabilizer was varied at 0, 1, 2, 3, and 4 mol% against that of Al2O3. It turns out that ionic conductivity increases even with 1 mol% lithia addition and reaches 67 mS cm-1 at 350 ℃ of its maximum with 3 mol%, which is two times higher than that of the undoped composite.
Keywords
Na-${\beta}^{{\prime}{\prime}}$-alumina; Solid electrolyte; Vapor phase conversion; Lithia addition; Sodium-beta alumina batteries;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. H. J. Hannink, P. M. Kelly, and B. C. Muddle, Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 83(3), 461-487 (2000).
2 S. T. Lee, S. G. Kim, M. H. Jang, S. H. Hwang, J. R. Haw, and S. K. Lim, Effect of phase stabilizers on the phase formation and sintering density of Na+-beta-alumina solid electrolyte, J. Ceram. Process. Res., 11(1), 86-91 (2010).
3 M. J. Sanchez-Rivera, M. J. Orts, V. Perez-Herranz, and S. Mestre, Study of lithium carbonate as sintering aid for tin oxide densification trough experimental designs: Main variables and microstructure changes, Boletin la Soc. Espanola Ceramica y Vidr., in press, (2022).
4 T. Oshima, M. Kajita, and A. Okuno, Development of sodium-sulfur batteries, Int. J. Appl. Ceram. Technol., 1(3), 269-276 (2004).
5 J. L. Sudworth, The sodium/nickel chloride (ZEBRA) battery, J. Power Sources, 100(1-2), 149-163 (2001).   DOI
6 Y. Wang. D. Zhou, V. Palomares, D. Shanmukaraj, B. Sun, X. Tang, C. Wang, M. Armand, T. Rojo, and G. Wang, Revitalising sodium-sulfur batteries for non-hightemperature operation: A crucial review, Energy Environ. Sci., 13, 3848-3879 (2020).   DOI
7 K. Jung, S. Lee, and G. Kim, Stress Analyses of the glass joints of contemporary sodium sulfur batteries, J. Power Sources, 269, 773-782 (2014).   DOI
8 C. A. Beevers and M. A. S. Ross, The crystal structure of "beta alumina" Na2O·11Al2O3, Zeitschrift fur Krist. - Cryst. Mater., 97, 59-66 (1937).   DOI
9 Y. H. Kim, D. H. Lee, D. G. Lee, K. Jung, and S. K. Lim, Analysis of process parameters affecting the crystal orientation of Na+ - β"-Al2O3 solid electrolyte in one-step synthesis cum sintering process, Mater. Res. Bull., 145, 111524 (2022).   DOI
10 S. M. Jamil, M. H. D. Othman, M. A. Rahman, J. Jaafar, A. F. Ismail, and M. A. Mohamed, Role of lithium oxide as a sintering aid for a CGO electrolyte fabricated via a phase inversion technique, RSC Adv., 5, 58154-58162 (2015).   DOI
11 A. I. Agustina, K. Skadell, C. L. Dirksen, M. Schulz, and S. P. Kusumocahyo, Sol-gel method for synthesis of Li+ - stabilized Na-β"-alumina for solid electrolytes in sodiumbased batteries, AIP Conf. Proc., 2175, 020070 (2019).
12 M. C. Bay, M. V. F. Heinz, A. N. Danilewsky, C. Battaglia, and U. F. Vogt, Analysis of C-lattice parameters to evaluate Na2O loss from and Na2O content in β"-alumina ceramics, Ceram. Int., 47(10), 13402-13408 (2021).   DOI
13 L. Ghadbeigi, T. D. Sparks, and A. V. Virkar, Electrochemical studies on Na-β"-alumina + yttria-stabilized zirconia (YSZ) composite mixed Na+-ion - O2--ion conductors, J. Electrochem. Soc., 166, F679-F686 (2019).   DOI
14 C. Schmid, X-ray characterization of β and β"-alumina, J. Mater. Sci. Lett., 5(3), 263-266 (1986).   DOI
15 T .C. Girija and A. V. Virkar, Low temperature electrochemical cells with sodium β"-alumina solid electrolyte (BASE), J. Power Sources, 180(1), 653-656 (2008).   DOI
16 F. K. Lotgering, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures - I, J. Inorg. Nucl. Chem., 9(2), 113-123(1959).   DOI
17 S. Liang, Y. Yang, K. Li, and X. Zhang, A study on the preparation of oriented Beta"-alumina ceramics using rod/flake-like boehmite as precursors and their properties, J. Eur. Ceram. Soc., 40(12), 4047-4055 (2020).   DOI
18 Y. Mordekovitz, L. Shelly, M. Halabi, S. Kalabukhov, and S. Hayun, The effect of lithium doping on the sintering and grain growth of SPS-processed, non-stoichiometric magnesium aluminate spinel, Materials, 9(6), 481 (2016).   DOI
19 L. Zhu and A. V. Virkar, Conversion kinetics and ionic conductivity in Na-β"-Alumina + YSZ (Naβ"AY) sodium solid electrolyte via vapor phase conversion process, Membr., 12(6), 567 (2022).   DOI
20 D. H. Lee, S. S. Han, Y. H. Kim, and S. K. Lim, Analysis of crystal phases of Na+-β/β"-alumina/YSZ composite prepared by vapor-phase synthesis from YSZ-toughened α-alumina, J. Ind. Eng. Chem., 76, 366-373 (2019).   DOI
21 K. Li, M. Ma, Y. Yang, S. Liang, and X. Zhang, Preparation of β"-Al2O3 electrolytes by freeze-drying and SPS, Ceram. Int., 47(11), 15017-15022 (2021).   DOI
22 A. V. Virkar, G. R. Miller, and R. S. Gordon, Resistivitymicrostructure relations in lithia-stabilized polycrystalline β"-alumina, J. Am. Ceram. Soc., 61(5-6), 250-252 (1978).   DOI
23 L. Ghadbeigi, A. Szendrei, P. Moreno, T. D. Sparks, and A. V. Virkar, Synthesis of iron-doped Na-β"-alumina + yttria-stabilized zirconia composite electrolytes by a vapor phase process, Solid State Ion., 290, 77-82 (2016).   DOI
24 M. P. Fertig, K. Skadell, M. Schulz, C. Dirksen, P. Adelhelm, and M. Stelter, From high- to low-temperature: The revival of sodium-beta alumina for sodium solidstate batteries, Batter. Supercaps, 5(1), e202100131 (2021).
25 M. C. Bay, M. V. F. Heinz, R. Figi, C. Schreiner, D. Basso, N. Zanon, U. F. Vogt, and C. Battaglia, Impact of liquid phase formation on microstructure and conductivity of Li-stabilized Na- β"-alumina ceramics, ACS Appl. Energy Mater., 2(1), 687-693 (2019).   DOI
26 H. Li, H. Fan, H. B. Wang, C. Wang, M. Zhang, G. Chen, X. Jiang, N. Zhao, J. Lu, and J. Zhang, Mechanical and electrical properties of lithium stabilized sodium beta alumina solid electrolyte shaping by non-aqueous gelcasting J. Eur. Ceram. Soc., 40(8), 3072-3079 (2020).   DOI
27 P. Parthasarathy and A. V. Virkar, Vapor phase conversion of α-alumina + zirconia composites into sodium ion conducting Na-β"-alumina + zirconia solid electrolytes, J. Electrochem. Soc., 160, A2268-A2280 (2013).   DOI
28 T. D. Sparks and L. Ghadbeigi, Anisotropic properties of Na- β"-alumina + YSZ composite synthesized by vapor phase method, J. Mater. Res., 33, 81-89 (2018).   DOI
29 N.L. Canfield, J. Y. Kim, J.F. Bonnett, R.L. Pearson III, V.L. Sprenkle, K.Jung. Effects of fabrication conditions on mechanical properties and microstructure of duplex β"-Al2O3 solid electrolyte., Mater. Sci. Eng. B, 197, 43-50 (2015).   DOI