• Title/Summary/Keyword: The First Derivative

Search Result 498, Processing Time 0.025 seconds

HIGHER DERIVATIVE VERSIONS ON THEOREMS OF S. BERNSTEIN

  • Singh, Thangjam Birkramjit;Devi, Khangembam Babina;Reingachan, N.;Soraisam, Robinson;Chanam, Barchand
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.323-329
    • /
    • 2022
  • Let $p(z)=\sum\limits_{\nu=0}^{n}a_{\nu}z^{\nu}$ be a polynomial of degree n and $p^{\prime}(z)$ its derivative. If $\max\limits_{{\mid}z{\mid}=r}{\mid}p(z){\mid}$ is denoted by M(p, r). If p(z) has all its zeros on |z| = k, k ≤ 1, then it was shown by Govil [3] that $$M(p^{\prime},\;1){\leq}\frac{n}{k^n+k^{n-1}}M(p,\;1)$$. In this paper, we first prove a result concerning the sth derivative where 1 ≤ s < n of the polynomial involving some of the co-efficients of the polynomial. Our result not only improves and generalizes the above inequality, but also gives a generalization to higher derivative of a result due to Dewan and Mir [2] in this direction. Further, a direct generalization of the above inequality for the sth derivative where 1 ≤ s < n is also proved.

Fluid viscous device modelling by fractional derivatives

  • Gusella, V.;Terenzi, G.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.177-191
    • /
    • 1997
  • In the paper, a fractional derivative Kelvin-Voigt model describing the dynamic behavior of a special class of fluid viscous dampers, is presented. First of all, in order to verify their mechanical properties, two devices were tested the former behaving as a pure damper (PD device), whereas the latter as an elastic-damping device (ED device). For both, quasi-static and dynamic tests were carried out under imposed displacement control. Secondarily, in order to describe their cyclical behavior, a model composed by an elastic and a damping element connected in parallel was defined. The elastic force was assumed as a linear function of the displacement whereas the damping one was expressed by a fractional derivative of the displacement. By setting an appropriate numerical algorithm, the model parameters (fractional derivative order, damping coefficient and elastic stiffness) were identified by experimental results. The estimated values allowed to outline the main parameter properties on which depend both the elastic as well as the damping behavior of the considered devices.

INEQUALITIES FOR THE NON-TANGENTIAL DERIVATIVE AT THE BOUNDARY FOR HOLOMORPHIC FUNCTION

  • Ornek, Bulent Nafi
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.3
    • /
    • pp.439-449
    • /
    • 2014
  • In this paper, we present some inequalities for the non-tangential derivative of f(z). For the function $f(z)=z+b_{p+1}z^{p+1}+b_{p+2}z^{p+2}+{\cdots}$ defined in the unit disc, with ${\Re}\(\frac{f^{\prime}(z)}{{\lambda}f{\prime}(z)+1-{\lambda}}\)$ > ${\beta}$, $0{\leq}{\beta}$ < 1, $0{\leq}{\lambda}$ < 1, we estimate a module of a second non-tangential derivative of f(z) function at the boundary point ${\xi}$, by taking into account their first nonzero two Maclaurin coefficients. The sharpness of these estimates is also proved.

MEASURE DERIVATIVE AND ITS APPLICATIONS TO $\sigma$-MULTIFRACTALS

  • Kim, Tae-Sik;Ahn, Tae-Hoon;Kim, Gwang-Il
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.229-241
    • /
    • 1999
  • The fractal space is often associated with natural phenomena with many length scales and the functions defined on this space are usually not differentiable. First we define a $\sigma$-multifractal from $\sigma$-iterated function systems with probability. We introduce the measure derivative through the invariant measure of the $\sigma$-multifractal. We show that the non-differentiable function on the $\sigma$-multifractal can be differentiable with respect to this measure derivative. We apply this result to some examples of ordinary differential equations and diffusion processes on $\sigma$-multifractal spaces.

  • PDF

Development of Edge Detection System Based on Adaptive Directional Derivative (적응성 방향 미분에 의한 에지 검출기의 구현)

  • Kim, Eun-Mi
    • Convergence Security Journal
    • /
    • v.6 no.3
    • /
    • pp.29-35
    • /
    • 2006
  • In order to detect and locate edge features precisely in real images we have developed an algorithm by introducing a nonlocal differentiation of intensity profiles called adaptive directional derivative (ADD), which is evaluated independently of varying ramp widths. In this paper, we first develop the edge detector system employing the ADD and then, the performance of the algorithm is illustrated by comparing the results to those from the Canny's edge detector.

  • PDF

Performance Evaluation of Edge Detection System Based on Adaptive Directional Derivative (적응성 방향 미분에 의한 에지 검출기의 성능 평가)

  • Kim, Eun-Mi;Park, Cherl-Soo
    • Convergence Security Journal
    • /
    • v.7 no.3
    • /
    • pp.39-44
    • /
    • 2007
  • In order to detect and locate edge features precisely in real images we have developed an algorithm by introducing a nonlocal differentiation of intensity profiles called adaptive directional derivative (ADD), which is evaluated independently of varying ramp widths. In this paper, we first develop the edge detector system employing the ADD and then, the performance of the algorithm is illustrated by comparing the results to those from the Canny's edge detector.

  • PDF

The Cascade PID Type Fuzzy Control Method

  • Lee, Jung-Hoon;Ki whan Eom;Lee, Yong-Gu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.93.3-93
    • /
    • 2001
  • We propose the cascade PID type fuzzy control method for a good performance such as robustness. The one of proposed method, the first stage have two input variables of an error and a derivative error, and one output variable, and the next stage have two input variables of the output of first stage and an integral error, and one output variable, have two stages. The other, the first stage has one input of an error, and one output variable, and the second stage have two input of the output of first stage and a derivative error, and one output variable, and the third stage have two input of the output of the second stage and an integer error, and one output variable ...

  • PDF

Stress Analysis of Linear Elastic Solid Problems by using Enhanced Meshfree Method based on Fast Derivatives Approximation (고속 도함수 근사화에 의해 개선된 무요소법을 이용한 선형탄성 고체문제의 응력해석)

  • 이상호;김효진;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.583-590
    • /
    • 2002
  • Point collocation method based on the fast derivatives approximation of meshfree shape function is applied to solid mechanics in this study. Enhanced meshfree approximation with approximated derivative of shape function is reviewed, and formulation of linear elastic solid mechanics by point collocation method is presented. It implies that governing equation of solid mechanics with strong form is directly formulated without no numerical integration cells or grid. The regularity of weight function is not required due to a use of approximated derivative, so we propose the exponential type weight function that is discontinuous in first derivative. The convergence and stability of the proposed method is verified by passing the generalized patch test. Also, the efficiency and applicability of the proposed method in solid mechanics is verified by solving types of solid problems. Numerical results show that not only a use of proposed weight function leads lower error and higher convergence rate than that of the conventional weight functions, but also the improved collocation method with derivative approximation enables to compute the derivatives of shape function very fast and accurately enough to replace the classical direct derivative calculation.

  • PDF

Determination of Nitrogen in Fresh and Dry Leaf of Apple by Near Infrared Technology (근적외 분석법을 응용한 사과의 생잎과 건조잎의 질소분석)

  • Zhang, Guang-Cai;Seo, Sang-Hyun;Kang, Yeon-Bok;Han, Xiao-Ri;Park, Woo-Churl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.259-265
    • /
    • 2004
  • A quicker method was developed for foliar analysis in diagnosis of nitrogen in apple trees based on multivariate calibration procedure using partial least squares regression (PLSR) and principal component regression (PCR) to establish the relationship between reflectance spectra in the near infrared region and nitrogen content of fresh- and dry-leaf. Several spectral pre-processing methods such as smoothing, mean normalization, multiplicative scatter correction (MSC) and derivatives were used to improve the robustness and performance of the calibration models. Norris first derivative with a seven point segment and a gap of six points on MSC gave the best result of partial least squares-1 PLS-1) model for dry-leaf samples with root mean square error of prediction (RMSEP) equal to $0.699g\;kg^{-1}$, and that the Savitzky-Golay first derivate with a seven point convolution and a quadratic polynomial on MSC gave the best results of PLS-1 model for fresh-samples with RMSEP of $1.202g\;kg^{-1}$. The best PCR model was obtained with Savitzky-Golay first derivative using a seven point convolution and a quadratic polynomial on mean normalization for dry leaf samples with RMSEP of $0.553g\;kg^{-1}$, and obtained with the Savitzky-Golay first derivate using a seven point convolution and a quadratic polynomial for fresh samples with RMSEP of $1.047g\;kg^{-1}$. The results indicate that nitrogen can be determined by the near infrared reflectance (NIR) technology for fresh- and dry-leaf of apple.

RESULTS ASSOCIATED WITH THE SCHWARZ LEMMA ON THE BOUNDARY

  • Bulent Nafi Ornek
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.389-400
    • /
    • 2023
  • In this paper, some estimations will be given for the analytic functions belonging to the class 𝓡(α). In these estimations, an upper bound and a lower bound will be determined for the first coefficient of the expansion of the analytic function h(z) and the modulus of the angular derivative of the function ${\frac{zh^{\prime}(z)}{h(z)}}$, respectively. Also, the relationship between the coefficients of the analytical function h(z) and the derivative mentioned above will be shown.