Determination of Nitrogen in Fresh and Dry Leaf of Apple by Near Infrared Technology

근적외 분석법을 응용한 사과의 생잎과 건조잎의 질소분석

  • Zhang, Guang-Cai (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Seo, Sang-Hyun (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Kang, Yeon-Bok (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Han, Xiao-Ri (College of Land and Environment, Shenyang Agricultural University) ;
  • Park, Woo-Churl (Department of Agricultural Chemistry, Kyungpook National University)
  • Received : 2004.06.29
  • Accepted : 2004.07.24
  • Published : 2004.08.30

Abstract

A quicker method was developed for foliar analysis in diagnosis of nitrogen in apple trees based on multivariate calibration procedure using partial least squares regression (PLSR) and principal component regression (PCR) to establish the relationship between reflectance spectra in the near infrared region and nitrogen content of fresh- and dry-leaf. Several spectral pre-processing methods such as smoothing, mean normalization, multiplicative scatter correction (MSC) and derivatives were used to improve the robustness and performance of the calibration models. Norris first derivative with a seven point segment and a gap of six points on MSC gave the best result of partial least squares-1 PLS-1) model for dry-leaf samples with root mean square error of prediction (RMSEP) equal to $0.699g\;kg^{-1}$, and that the Savitzky-Golay first derivate with a seven point convolution and a quadratic polynomial on MSC gave the best results of PLS-1 model for fresh-samples with RMSEP of $1.202g\;kg^{-1}$. The best PCR model was obtained with Savitzky-Golay first derivative using a seven point convolution and a quadratic polynomial on mean normalization for dry leaf samples with RMSEP of $0.553g\;kg^{-1}$, and obtained with the Savitzky-Golay first derivate using a seven point convolution and a quadratic polynomial for fresh samples with RMSEP of $1.047g\;kg^{-1}$. The results indicate that nitrogen can be determined by the near infrared reflectance (NIR) technology for fresh- and dry-leaf of apple.

사과의 영양진단에서 사과잎 분석을 신속히 하기 위한 방법을 모색하기 위해 생잎과 건조잎을 이용해 근적의 스펙트럼을 측정하고 이를 질소 함량과의 최적의 상관관계를 도출하기 위해 부분소자승(PLS)과 주성분회귀(PCR)과 같은 다변량 분석법을 이용하여 비파괴 검량식을 작성하였다. 또한 검량식 작성에서 비파괴 측정 정확도를 향상시키기 위하여 smoothing, mean normalization, multiplicative scatter correction (MSC). derivative 등의 다양한 데이터 전처리 조작을 수행하여 정확도 향상 가능성을 조사하였다. 사과 건조잎의 비파괴 측정 가능성을 조사한 결과 PLS-1 모델에서 Norris first derivate하였을 태 RMSEP가 $0.6999g\;kg^{-1}$ 로 가장 좋았으며, 생잎은 Savitzky-Golay first derivate하였을 때에 RMSEP 가 $1.202g\;kg^{-1}$으로 가장 좋았다. 건조잎의 PCR 모델은 mean normalization 처리 후 Savitzky-Golay first derivative하였을 때가 RMSEP 가 $0.553g\;kg^{-1}$, 이었으며 생잎에서도 RMSEP는 $1.047g\;kg^{-1}$로 나타났다. 이와 같은 견과로서 사과의 생잎과 건조잎의 분석이 근적외분석기술에 의해 가능할 것으로 판단된다.

Keywords

References

  1. Beebe, K. R., and B. R. Kowalski. 1987. An introduction to multivariate calibration and analysis. Anal. Chem. 59:1007A-1017A https://doi.org/10.1021/ac00144a001
  2. Esbensen, K., S. Schonkopf, and T. Midtgaard. 1994. Multivariate Analysis in Practice. Camo AS, Trndheim, Norway
  3. Frank, I. E., J. H. Kalivas, and B. R. Kowalski. 1983. Partial least squares solutions for multicomponent analysis. Anal. Chem. 55:1800-1804 https://doi.org/10.1021/ac00261a035
  4. Geladi, P., and B. R. Kowalski. 1986. Partial least-squares regression: a tutorial. Anal. Chim. Acta. 185:1-17 https://doi.org/10.1016/0003-2670(86)80028-9
  5. Hopkins, D. W. 2001a. What is a Norris derivative? NIR News 12(3):3-5
  6. Hopkins, D. W. 2001b. Derivatives in spectroscopy. Near Infrared Analysis 2(1):1-13
  7. Hopkins, D. W. 2002. Derivatives - a systematic approach to removing variability before applying chemometrics. p. 93-102. In R. K. Cho and A. M. C. Davies (ed.) Near Infrared Spectroscopy: proceedings of the 10th international conference. NIR publications, Chichester, UK
  8. Martens, H., and T. Naes. 1991. Multivariate Calibration. John Wiley & Sons, Inc., Chichester, UK
  9. McClure, W. F, B. Crowell, D. L. Stanfield, S. Mohapatra, S. Morimoto, and G. Batten. 2002. Near infrared technology for precision environmental measurements: Part 1. Determination of nitrogen in green- and dry-grass tissue. J. Near Infrared Spectrosc. 10:177-185 https://doi.org/10.1255/jnirs.333
  10. Morimoto, S., W. F. McClure, B. Crowell and D. L. Stanfield. 2002. Near infrared technology for precision environmental measurements: part 2: determination of carbon in green grass tissue. J. Near Infrared Spectrosc. 11:257-267
  11. Norris, K. H. 2001. Understanding and correcting the factors which affect diffuse transmittance spectra. NIR News 12(3):6-9
  12. Norris, K. H., and P. C.Williams. 1984, Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat: I. Influence of particle size. Cereal Chem. 61:158-165
  13. Savitzky, A., and M. J. E. Golay. 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36:1627-1639 https://doi.org/10.1021/ac60214a047
  14. Swierenga, H., A. P. de Weijer, R. J. van Wijk, and L. M. C. Buydens. 1999. Strategy for constructing robust multivariate calibration models, Chemometrics and Intelligent Laboratory Systems 49:1-17 https://doi.org/10.1016/S0169-7439(99)00028-3
  15. Walinga, I., J. J. van der Lee, V. J. G. Houba, W. van Vark, and I. Novozamsky. 1995. Plant Analysis Manual. p. PANA-A2/1-3,19-21. Kluwer Academic Publishers, Dordrecht, the Netherlands
  16. Workman, J., and A. W. Springsteen. 1998. Applied spectroscopy: a compact reference for practitioners. Academic Press, San Diego, CA, USA