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RESULTS ASSOCIATED WITH THE SCHWARZ LEMMA
ON THE BOUNDARY

BULENT NAFT ORNEK

ABSTRACT. In this paper, some estimations will be given for the analytic
functions belonging to the class R («). In these estimations, an upper
bound and a lower bound will be determined for the first coefficient of
the expansion of the analytic function h(z) and the modulus of the angu-

h'(2)
h(z) >
between the coefficients of the analytical function h(z) and the derivative
mentioned above will be shown.

lar derivative of the function 2

respectively. Also, the relationship

1. Introduction

Let A denote the class of functions h(z) = z + E;O:Q d,zP that are analytic
in D. Also, let R (a) be the subclass of A consisting of all functions h(z)
satisfying

(1.1) YA - +la=ba—-bp-1)}dy| < (a=b)lal,

p=2
where —1 < b < a <1 and 0 # a € C. In this paper, we study some of the
properties of the classes R (). Namely, an upper bound will be found for the
modulus of dy = 2(!0), which is one of the coefficients forming the analytic
function h(z) belonging to this class.

Let h € R («) and consider the following function

Z:(’(;) —1
(1.2) r(z) = 0 )
b(h(z) —1)—(a—b)a

Here, r(z) is an analytic function in D and r(0) = 0. Now, let us show that
|r(z)] < 1 in D. At this step, we will consider the difference between the
modules of the numerator and the denominator of r(z) in (1.2). So, we take

|21 (2) = h(2)| = b (2 (2) = h(2)) — (a — b) ah(2)]
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z <1 + Zpdpzp_1> - (z + Z dpzp) ’
p=2 p=2

b <z (1 + ipdpzp1> — <z+ idpzp>> —(a—b)a (z + idpzp> |
p=2 p=2 p=2

= Z(p—l)dpzp - (a—b)a<z+2dpzp>—bZ(p—l)dpzp

<Y A= +la=ba=bp-1D}dy| 2" = (a=b)|al 2]

p=2
If we pass to limit in the last expression as |z| — 17, we take

|20/ (2) = 1(2)] = b (21 (2) = h(2)) = (a = b) @h(2)]|

<Y A= +la=ba-bp-1}dy|—(a—1b)|al.

Also, since Z;‘;Q {p—1)+|(a=b)a—-b(p—1)}|dp| < (a—0)|al, we obtain
|21/ (2) = h(2)| = [b (21 (2) = h(2)) = (a = b) @h(2)| < 0
and
Ir(2)| < 1.

Therefore, the function r(z) satisfies the conditions of the Schwarz lemma
([6], p- 329). That is, r(z) is an analytic function in D, r(0) =0 and |r(z)| < 1
for z € D. From the Schwarz lemma, we obtain

B zh'(z B — J2) »2 o) — _
b(f(i))_l)_(a—b)a b(dzz + (2d3 —d3) 2% +---) = (a = b)
and
r(z) dy+ (2d3 —d3) 2+ -+

z b(daz + (2d3 —d2)22+---)— (a—b)a’

If we pass to limit in the last expression as |z| — 0, we have

/ d2
——" <1
PO = | <
and
|d2| < (a—b)|al.

We thus obtain the following lemma.
Lemma 1.1. If h € R («), then we have the inequality
(1.3) |da| < (a —b)|al.
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At this point, we will investigate the following function assuming that zeros
of h(z) — z are different from zero,

Since ¢(z) satisfies the conditions of the Schwarz lemma, we obtain
zh/(z) 1

h(z 1
(15(2’) - zh!(z) = L
b( o) —1) —(a=b)aT] —
i=1
_ d22+(2d3—d%)22+-" 1
S b(dez 4+ (2ds —d3) 22+ ) —(a—b)a & L4
H 1—a;z
i=1
(725(2)7 d2+(2d3—d%)2’+”- 1
2 b(dez+(2d3—d3) 22+ ) —(a—b)a & . _a
il;ll 1o
d
60 = —2L <
(@=0)lal [T
and .
|da| < (a=b) o [T la -
i=1
We thus obtain the following lemma.
Lemma 1.2. Let h € R (a) and ay,as, ..., a, be zeros of the function h(z) —z

in D that are different from zero. Then we have the inequality
n
|da| < (a=b) o [ la -
i=1

Schwarz lemma is a hot topic and it is possible to encounter several studies
in the literature. The majority of these studies consider the boundary version
of Schwarz lemma, which actually corresponds to the estimation of the modulus
of the derivative of the function from below at some boundary point of the unit
disc. The boundary version of Schwarz lemma is defined as follows [12,14]:

Lemma 1.3. If m(z) extends continuously to some boundary point ¢ € D =
{z:|z| =1} with |s| =1, and if |m(s)| = 1 and m/(s) exists, then

, 2
(1.4) Im/ ()| > T4 [ (0)]

(L5) /()] = 1.
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Moreover, the equality in (1.4) holds if and only if

zZ—a

m(z) :Zl — 0

for some a € (—1,0]. Also, the equality in (1.5) holds if and only if m(z) = ze®.

Inequality (1.5) is frequently encountered in literature as it has important
applications in the geometric theory of functions and also, its generalizations
are still popular in mathematics community [1-5,7-12].

The following lemma, known as the Julia-Wolff lemma, is needed in the
sequel (see, [13]).

Lemma 1.4 (Julia-Wolff lemma). Let m be an analytic function in D, m(0) =
0 and m(D) C D. If, in addition, the function m has an angular limit m(s) at
¢ € 9D, |m(s)| =1, then the angular derivative m’(s) exists and 1 < |m/(g)| <
00.

Corollary 1.5. The analytic function m has a finite angular derivative m’(s)
if and only if m’ has the finite angular limit m’(c) at ¢ € dD.
2. Main results

In this section, we discuss different versions of the boundary Schwarz lemma
for R («) class.

Theorem 2.1. Let h € R(«). Assume that, for 1 € 9D, h has an angular
limit h(1) at the point 1, W' (1) = (1 — %a) h(1). Then we have the inequality

/ ! _
2.1) (zh (z)) > @ b o]
hz) )., (1—b)
The inequality (2.1) is sharp for b = —1 with extremal functions h(z) =

Proof. Let
_ p(z) =1 )=
"= @) @ na P e

For W' (1) = (1 - %a) h(1), we have

. p(l)—1 _ e _
r(1) = bp(l) —1) —(a—b)a  b=ba—(a-b)a =

Also, with the simple calculations, we take
—(a—b)ap'(2)
(b(p(z) = 1) = (a=b)a)’

r'(z) =
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Therefore, from (1.5), we obtain
—(a=b)ap'(1)
(b(p(1) = 1) = (a = b) )’

(1= p' (1)
(@ —=1b)lal

1< (1)) =

and
(a—"b)l|al

(1-b)°
Now, weak-sharpness of an inequality (2.1) can be given as follows:
Let

()] =

z
h(z) = ————.
(1 + Z)(1+a)a
By taking In i(z) and differentiating it, p(z) = Z:ES) =1- (a'fi)zaz and p'(z2) =
1+a)a (1 at1l)a at+1)a
— G2 So, p(1) = G =1 5% and (p/(2)) o=y = — L2 O
The inequality (2.1) can be strengthened from below by taking into account,
dy =1 2(!0) , the first coefficient of the expansion of the function h(z) = z+da2?+

Theorem 2.2. Under the same assumptions as in Theorem 2.1, we have

20 (2)\ 4(a—b)|af
< nz) >Z_1 = 2(@=b)Jal + 7 O)]

(2.2)

Proof. From the expression of r(z) and from (1.4), we obtain

2 (1-0)"|p'(1)]
— = <) = =t
AT e e
Since
/ o da
|7’ (0)|_ (a—b)a )
we take )
2 1=y )
ds = (a—=0b)|a| ’
Lt [phe] @bl
and ,
2(a—0b)|a]
(1 - _
POl el + (@] O

The inequality (2.2) can be strengthened as below by taking into account

ds = hl;(o) which is the coefficient in the expansion of the function h(z) =

24+ dyz? +dgzd + -
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Theorem 2.3. Let h € R («). Assume that, for 1 € 9D, h has an angular
limit h(1) at the point 1, h'(1) =

an |()

(a—b) o 2((a —b) |a| — |da|)* .
(-0’ (a—b)* o) — |da|* +[(2ds — d3) (a — b) o + bd]
Proof. Let r(z) be the same as in the proof of Theorem 2.1 and ¢(z) = z. By

the maximum principle, for each z € D, we have the inequality |r(z)| < [t(2)].
So,

(1 — ‘f—:za) h(1). Then we have the inequality

r(z) 1 p(z) —1
t(z) = (b(p(Z) -1)- (ab)a>

_1( d22+(2d3—d%)22+“' )

T2\ b(daz+ 2d3 —d2) 22+ ) — (a—b)
dy+ (2d3 —d3) z+ - --
b(dez + (2d3 —d3) 22+ ) — (a—b)a

is an analytic function in D and |u(z)| < 1 for z € D. In particular, we have

w(0)] = 1%l
(24) ) = A <
and
, |(2d3—d§)(a—b)a+bd§|
v (0)] = .
o (@7 Jal
The auxiliary function
s(z) = 7u(z);u(0)
1 —u(0)u(z)

is analytic in D, s(0) = 0, |s(z)| < 1 for |z| < 1 and |s(1)] = 1 for 1 € OD.
From (1.4), we obtain

2 o L OP
1+wwﬂ<'a”_1—mmmuf|u”
L+ O oy
S ORI
_@=bal+ 1l (A=0’ O]
(@=Dlal=ldl\ @bl )

Since



RESULTS ASSOCIATED WITH THE SCHWARZ LEMMA ON THE BOUNDARY 395

and
|(2ds—d3)(a—b)a+bd3|
)= Ol T erer— _ [(2ds = d3) (e —b)a+ bdj
1—|u(0))? ldo| )2 a—0b)2laf —|dof*
WOF () (a=b)7Jaf — |ds]
we obtain
2 < (a=b)al + |do| L=0p'@) 1
1 4 |@ds=d3)(a—blotbd| = (a —b) |a| — |do] (a—0b)|al ’
(a—b)*|a|*—|d2|?
2 ((a—b) o] — |da])” Pt =0’ ') ]
(a=b)*[af® = |dof* + |(2ds — d3) (a—b) o + bd3| — (a—Db)la|
and
a—0b) |« 2((a —b) |a| — |dg])?
poz ezl (1, 2(a=blel=jd) ).
(1-0) (a—b)"|al” — |da|” + [(2d3 — d3) (a — b) a + bd3|

O

If h(z) — z has zeros different from z = 0, taking into account these zeros,
the inequality (2.3) can be strengthened in another way. This is given by the
following theorem.

Theorem 2.4. Leth € R («) and a1, aq, ..., a, be zeros of the function h(z)—z
in D that are different from zero. Assume that, for 1 € 0D, h has an angular
limit h(1) at the point 1, h'(1) = (1 - Ha) h(1). Then we have the inequality

zh (2)\ (a—1b)la |a| |aZ
(2.5) ‘( ) )Z_l > . < +Z

|1—al

2 ((a, 0ol T o - |d2|>2

+ n 2 n n
((wb> ol 11 \aA) —|do|* + [T fas] |(2ds —d3)(a—b) o+ bd3 + (a — b) ads 2171 o]
Proof. Let r(z) be asin (1.2) and a1, ag, . .., a, be zeros of the function h(z)—z

in D that are different from zero. Also, consider the function
z— al
=z
H 1—a;z

By the maximum principle for each z € D, we have

Ir(z)| < [B(2)] .
Consider the function
_or(z) p(z) —1 1
¥(z) = B(2) - (b(p(z) -1 —(a— b)a) . ﬁ =g,
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_ doz + (2d3 — d2) 22+ 1
- 2 2 _ n
b(dez+ (2d3 —d3) 224+ --+) — (a b)az =
i=1
B dy+ (2ds —d3) z+ - - 1
C b(dez 4 (2d3 —d3) 22 +---)—(a—b) ﬁ sea;
1—a;z
i=1

The function 9(z) is analytic in D and [9(z)| < 1 for |z| < 1. In particular, we
have

|da|
(a =)l TT |ail

i=1

[9(0)] =

and

(2ds — d3) (a — b)a+ bd3 + (a— b) ady Y I
|19/(O)‘ = — i=1
2 2
(a =" lof” IT la]

The composite function

0(z) — 9(0)

YO )

is analytic in D, |(2)] < 1 for |z| < 1 and ¢(0) = 0. For 1 € 9D and
(1) = (1 - %a) h(1), we take [1(1)] = 1.
From (1.4), we obtain

2 iy L PO
) == ‘1—19(0)19(1) Y
L DOy
< W”ur(l)\ B(1))
(a =)o 1T fai] + lds|

= (IF (W1 =1B"M)]).
(a—b) e 1;[1 |ai| = |de]

It can be seen that
[0 (0)]

[’ (0)] = T WOF
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and

n —la, 2
‘(2d37d§)(a7b)a+bd§+(a7b)ad2 3 Loledl”

i=1 v

n

/ (a=0)laf” 1 as|
[ (0)] = - 2

1— \dzln
(a—b)|e] l;[llail

’@%(gﬂawa+b£+(awa@§:15ﬂﬂ
<<(a “hl 11 ') - |d2|2>

/ - 1_|ai|2
B'(1)| =1+ ——5, 1€0U.

n
=] la:l
i=1

Also, we have

Therefore, we obtain
2

n
(2d3—d2)(a—b)a+bdZ+(a—blady 3
1 =1

i=

(((a—bna\iﬁllail)zfldﬁ)
(a=b)la] T |as| +]ds| ((1 — 5)2 Ip'(1)] "1 |a,|2>

(a=b)la [ jail-1do \ (@ —0) el 11— a?

1+ T la
i=1

IN

=1
n 2
2((a-0)lo] [ ja:l-la))
n 2 n
(@=)ial FLjasl ) ~laaf?+ F Jos

o 5 T lflailz
(2d3—d3)(a—b)a+bd3+(a—b)ads 3, — i
e

1-b)*p(1 "1 — aif?
) Ip()l_l_zl Iazl27
(a—1b)laf |1 ay

and so, we get inequality (2.5). O

If h(z) — z has no zeros different from z = 0 in Theorem 2.3, the inequality
(2.3) can be further strengthened. This is given by the following theorem.

Theorem 2.5. Let h € R («), h(z) — z has no zeros in D except z = 0 and
dy > 0. Assume that, for 1 € 0D, h has an angular limit h(1) at the point 1,

K1) = (1 - %a) h(1). Then we have the inequality

e ()
5 (a=b)la] (1 B 2(a=b)|alds n* (21 ) .

(1—b)? 2(a—b)|aldz In( =Fm7) — | (2ds —d3 ) (a—b)a+bd3|
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Proof. Let dy > 0 in the expression of the function h(z). Having in mind the
inequality (2.4) and the function h(z) — z has no zeros in D except z = 0, we
denote by Inwu(z) the analytic branch of the logarithm normed by the condition

Inu(0) = In <(ad;)|a|) <0.

The auxiliary function
_ Inu(z) — Inu(0)
~Inwu(z) + Inwu(0)

is analytic in the unit disc D, |©(z)| <1, ©(0) =0 and |0(1)| =1 for 1 € dD.
From (1.4), we obtain

O(z)

2 R W)
1+1]6/(0)] <O’ IInu(1) + Inu(0)[? u(l)’
“2ul0) )y

T n? u(0) + arg? u(1)
Replacing arg? u(1) by zero, then

1 o fawwl
[(2d3-d2)(a—b)atbd| — In (( da ) (a—0)l|a]

1 — (el a=b)fa]
%42 %2
a=sirar 0 (@=Hrar)

and
2(a —b)|aldyIn® | —%2— 2.
1— (a=ble] < A=) ')
2(a —b)[al daln (%) — (25 — d3) (o — b o+ b3~ (@ =Dl
Thus, we obtain the inequality (2.6). O

The following theorem shows the relationship between the coefficients dy =

h,;(!o) and d3 = h,,?:!(o) in the Maclaurin expansion of the function h(z) = z +

d222+d323+“-.
Theorem 2.6. Let h € R (a), h(z) — z has no zeros in D except z = 0 and
ds > 0. Then we have the inequality
do
ady In () ’ |
(a—10)|al

Proof. The function ©(z) we have expressed in Theorem 2.5 satisfies the con-
ditions for the Schwarz lemma. Thus, if we apply the Schwarz lemma to the
function O(z), we obtain

|(2d3 — d3) (a —b) v+ bd3| < 2(a—b)

1> 0/(0)] = |21n u(0)|
- |In %(0) + In u(0)|?

' (0) '
u(0)



and
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—1  |u/(0)

2Inu(0) u(())‘

|(2d3—d3)(a—b)a+bd3]|
(a=b)*|a|?

2d. d-
(abja] 1B ((a—éla\)

ads In (wdz)'a')’ .

|(2d3 — d3) (a —b) v + bd3| < 2(a—b)
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