• Title/Summary/Keyword: Tetrahedral

Search Result 433, Processing Time 0.024 seconds

Three-dimensional Forging Simulation with Tetrahedral Elements and Hexahedral Elements and their Comparison with Experiments (사면체요소와 육면체요소를 이용한 삼차원 단조 시뮬레이션 결과의 비교 및 검증)

  • Lee, Min-Cheol;Baek, Jong-Pa;Joun, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1637-1641
    • /
    • 2007
  • In this paper, we simulate a rotor pole cold forging process by a forging simulator with both tetrahedral and hexahedral element capabilities and compare the predictions obtained by the two approaches with the experiments. Hexahedral element capability runs manually while tetrahedral element capability runs automatically with help of an intelligent remeshing technique. It is shown that the tetrahedral element capability can give quite accurate solution if assisted by the intelligent remeshing technique even though the tetrahedral element itself is not theoretically and numerically clear.

  • PDF

The NMR Pseudocontact Shift of Tetrahedral and Pseudo-Tetrahedral Complex of Cu(II)

  • Kim, Dong Hui;Lee, Gi Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.1
    • /
    • pp.69-72
    • /
    • 1996
  • The NMR dipolar shift in tetrahedral and tetragonally-distorted tetrahedral complexes for Cu(Ⅱ) has been calculated adopting nonmultipole expansion method. The exact solution of ΔB/B(ppm) is exactly in agreement with multipolar results when R, the distance between the paramagnetic ion and the nucleus, is larger than 0.2 nm. The major contribution to the dipolar shift arises from 1/R3 term but the other terms, 1/R5 and 1/R7, contribute significantly to the pseudocontact shift when R is shorter than 0.5 nm. The shift is mainly due to the 3d orbitals and sensitive to distortion parameters at short range of R.

Tetrahedral Frameworks of Silicate ; Derivation of Structures (규산염 강목구조;구조의 유도)

  • 정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.4
    • /
    • pp.242-247
    • /
    • 1977
  • By means of coloring of plane nets a number of different tetrahedral frameworks can be derived. With the aid of this method all tetrahedral framework structures which built up of layer structures with 2, 4, 8 tetrahedra per unit cell and 6-membered ring or 4-8-membered ring are given. For the systematic derivation of all possible structures, graph theory may be introduced.

  • PDF

Modified Octet Truss Cellular Metals Fabricated by Expanding Metal Process (I) - Compression and Shear Properties - (확장금속망 공정으로 제작된 옥테트 트러스 다공질 금속 (I) - 압축 및 전단 특성 -)

  • Joo, Jai-Hwang;Lee, Dong-Seok;Jeon, In-Su;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1124-1130
    • /
    • 2007
  • This paper presents a new way for fabricating sandwich plates with tetrahedral truss cores. The tetrahedral truss cores are manufactured through metal expanding and bending process and then brazed with solid face sheets. The properties of sandwich plates with the tetrahedral truss cores composed of a wrought steel SS41 under compression and shear loading have been investigated. Good agreement is observed between the measured and predicted peak strengths. Comparisons with normalized compressive strength for other cellular metals have indicated that the tetrahedral truss structures outperform aluminum open cell forms and woven core sandwich plates.

TET2MCNP: A Conversion Program to Implement Tetrahedral-mesh Models in MCNP

  • Han, Min Cheol;Yeom, Yeon Soo;Nguyen, Thang Tat;Choi, Chansoo;Lee, Hyun Su;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.389-394
    • /
    • 2016
  • Background: Tetrahedral-mesh geometries can be used in the MCNP code, but the MCNP code accepts only the geometry in the Abaqus input file format; hence, the existing tetrahedral-mesh models first need to be converted to the Abacus input file format to be used in the MCNP code. In the present study, we developed a simple but useful computer program, TET2MCNP, for converting TetGen-generated tetrahedral-mesh models to the Abacus input file format. Materials and Methods: TET2MCNP is written in C++ and contains two components: one for converting a TetGen output file to the Abacus input file and the other for the reverse conversion process. The TET2MCP program also produces an MCNP input file. Further, the program provides some MCNP-specific functions: the maximum number of elements (i.e., tetrahedrons) per part can be limited, and the material density of each element can be transferred to the MCNP input file. Results and Discussion: To test the developed program, two tetrahedral-mesh models were generated using TetGen and converted to the Abaqus input file format using TET2MCNP. Subsequently, the converted files were used in the MCNP code to calculate the object- and organ-averaged absorbed dose in the sphere and phantom, respectively. The results show that the converted models provide, within statistical uncertainties, identical dose values to those obtained using the PHITS code, which uses the original tetrahedral-mesh models produced by the TetGen program. The results show that the developed program can successfully convert TetGen tetrahedral-mesh models to Abacus input files. Conclusion: In the present study, we have developed a computer program, TET2MCNP, which can be used to convert TetGen-generated tetrahedral-mesh models to the Abaqus input file format for use in the MCNP code. We believe this program will be used by many MCNP users for implementing complex tetrahedral-mesh models, including computational human phantoms, in the MCNP code.

Tetrahedral Mesh Generation Using a Mixed Method of a Grid and an Advancing Front Approach (격자법과 전진경계법을 흔합한 사면체 요소망의 자동생성)

  • 김영웅;전성재;채수원
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 2003
  • In this paper, a tetrahedral mesh generation algorithm which uses a grid based method for interior region and an advancing front method for outer surface region is proposed. In order to apply an advancing front method for outer region of an object, a new operator so called a hole operator has been developed to handle multiple shells. With this grid based approach in the interior region, more stable and uniform meshes can be constructed especially in the interior region.

Automatic Tetrahedral Mesh Generation using 3-D Operators (3-D 오퍼레이터를 이용한 사면체 요소망의 자동 생성)

  • 권기연;채수원;이병채
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.27-34
    • /
    • 2004
  • A tetrahedral mesh generation scheme using 3-D operators has been presented. The proposed scheme employs new 3-D operators such as rearranging and modified finishing operators in addition to the previous trimming, wedging, digging, splitting and finishing operators. These new operators have been introduced in order to increase the stability of mesh generation process. Check processings with surrounded element edges and faces have also been optimized by employing a searching algorithm. Sample meshes are constructed to demonstrate the mesh generating capability of the proposed algorithm.

Theoretical Studies on the Methanolysis of a Cephalosporin; Mimicking Acylation of the Active Site Serine of D-Ala-D-Ala Transpeptidases

  • Nahm, Kee-Pyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.674-678
    • /
    • 1991
  • Methanolysis of a ${\beta}$-lactam ring of a cephalosporin was simulated with AM1 semiempirical quantum mechanical calculation. The tetrahedral intermediate TD1 from an O-protonated cephalosporin and a methanol transfers the proton intramolecularly to the C-4 carboxylate to generate an oxyanion, i.e., second tetrahedral intermediate TD2, which undergoes the amide bond cleavage without further protonation on the N-5. For this cleavage a low-energy barrier TS2 was located. According to the energy diagram, tetrahedral intermediates easily undergo ring cleavage even without the protonation on the amide nitrogen.

Determination of Initial Conditions for Tetrahedral Satellite Formation

  • Yoo, Sung-Moon;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.285-290
    • /
    • 2011
  • This paper presents an algorithm that can provide initial conditions for formation flying at the beginning of a region of interest to maximize scientific mission goals in the case of a tetrahedral satellite formation. The performance measure is to maximize the quality factor that affects scientific measurement performance. Several path constraints and periodicity conditions at the beginning of the region of interest are identified. The optimization problem is solved numerically using a direct transcription method. Our numerical results indicate that there exist an optimal configuration and states of a tetrahedral satellite formation. Furthermore, the initial states and algorithm presented here may be used for reconfiguration maneuvers and fuel balancing problems.

Automatic Generation of Tetrahedral Meshes from General Sections (일반 단면으로부터 사면체 요소망의 자동생성)

  • Chae, Su-Won;Lee, Gyu-Min;Sin, Sang-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.196-205
    • /
    • 2000
  • Computed Tomography (CT), Nuclear Magnetic Resonance Imaging (MR1) and some ultrasound techniques make it possible to obtain cross sections of human body or mechanical parts. In CAD system, a series of sectional surfaces can also be obtained from solid models of 3D objects. In this paper we introduce a tetrahedral meshing algorithm from these series of general sections using basic operators. In this scheme. general sections of three-dimensional object are triangulated first and side surfaces between two sections are triangulated by the use of tiling process. Finally tetrahedral meshing process is performed on each layer of 3D objects, which is composed of two general sections and one side surface.