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Determination of Initial Conditions for Tetrahedral Satellite Formation
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This paper presents an algorithm that can provide initial conditions for formation flying at the beginning of a region of 

interest to maximize scientific mission goals in the case of a tetrahedral satellite formation. The performance measure is 

to maximize the quality factor that affects scientific measurement performance. Several path constraints and periodicity 

conditions at the beginning of the region of interest are identified. The optimization problem is solved numerically using 

a direct transcription method. Our numerical results indicate that there exist an optimal configuration and states of a 

tetrahedral satellite formation. Furthermore, the initial states and algorithm presented here may be used for reconfigura-

tion maneuvers and fuel balancing problems.
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1. INTRODUCTION

Satellite formation flying is defined as a set of more 

than one satellite whose states are coupled through a 

common control law (Scharf et al. 2004). Formation flying 

missions can be divided into two main categories, based 

on the motion of the chief satellite, which is a reference 

point to describe a relative motion. First, for the case of a 

circular reference orbit, formation flying can be applica-

ble to Earth observation, including space interferometry, 

and synthetic apertures. The second main category is for 

the case of an eccentric reference orbit, which has several 

advantages in scientific missions, such as the magneto-

spheric multiscale (MMS) mission (Curtis 2000, Curtis et 

al. 2003) and the cluster II mission (Dow et al. 2004). To 

meet the scientific mission goals, four-spacecraft forma-

tions are commonly used to take measurements in three 

dimensions at intersatellite distances on the order of sev-

eral kilometers. The work presented in this paper was mo-

tivated by the need for an algorithm that can provide ini-

tial conditions for formation flying at the beginning of the 

region of interest to maximize scientific mission goals for 

the case of a tetrahedron formation with relatively high 

eccentricities, such as an MMS mission. Recently, several 

papers have attempted to solve tetrahedral formation op-

timization problems similar to the one considered in this 

paper by focusing on various ways to calculate trajecto-

ries and determine initial conditions at the beginning of 

a region of interest. Huntington & Rao (2008) designed a 

minimum-fuel trajectory to transfer four spacecraft from 

a degraded tetrahedral formation into a tetrahedron that 

satisfied certain geometric quality constraints for a por-

tion of its orbit. Guzman (2003) developed a general op-

timization procedure for tetrahedron formation control 

to calculate the maneuver sequence that minimizes the 

fuel needed to transfer the formation from its current 

configuration to the target configuration. Chavez Clem-

ente & Atkins (2005) developed hierarchical optimization 

schemes. Zanon & Campbell (2005) presented a search 

space reduction technique to solve the coupled guidance 

and control problem. Hughes (2008) found optimal orbit 

states for MMS and laser interferometer space antenna 

mission (LISA Project Office 2000) by using a direct tran-

scription method. To take into account the actual size of 

the tetrahedron, Hughes (2008) proposed a polynomial 

function and adopted a performance metric that evalu-
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upper dot represents the differentiation with respect to 

time(t). In addition, θ and e refer to the true anomaly and 

the eccentricity of the chief satellite, respectively. ρ(θ) ≡ 

1+ecos θ and Γ ≡ L3/2/GM are defined, where 2L R θ=   is 

the magnitude of the orbital angular momentum of the 

Chief satellite, G is the universal gravitational constant, 

and M is the mass of Earth. 

Changing the independent variable from time (t) to the 

true anomaly (θ), Eq. (1) can be rewritten as:
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where primer (' ) represents differentiation with respect 

to the true anomaly, and state vector [x(θ), y(θ), z(θ)]T are 

now described by the true anomaly that is easily calculat-

ed from time using Kepler’s equation. The in-plane (x(θ) 

and y(θ)) motion and the out-of-plane (z(θ)) motion are 

decoupled, so we can deal with the problems separately. 

Now, for brevity, let’s consider the following transforma-

tion:
1/2[ , , ] [ , , ]ω=  x y z x y zT T

                              

(3)

where ω θ≡  , the orbital rate of the Chief satellite. With 

the same procedure as that derived by Humi (1993), Eqs. 

(2a) and (2b) become very simple:
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It is important to note that the actual position (x, y, z) 

and velocity ( , , )x y z    are related to the pseudo-position 

( , , )x y z    and pseudo-velocity ( , , )x y z′ ′ ′    as follows:
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or

ates both the size and the shape of a tetrahedron. Except 

for Hughes (2008), these works assume an active con-

trol to reconfigure the formation. Unlike the works cited 

above, we do not consider reconfiguration maneuver be-

tween different phases, but coast phase with a periodic-

ity condition; however, no maneuvers are allowed in the 

coast phase, and several constraints are applied only in 

this region. Also, a quality factor is adopted as a cost func-

tion, and relative states are considered to make it easier 

to determine the configuration of the tetrahedron in the 

region of interest.

Optimal initial conditions determined in this work 

make it possible to estimate the configuration of tetrahe-

dron formation and final states at the end of the region 

of interest phase, which can be used for reconfiguration 

maneuver and fuel balancing.

2. RELATIVE DYNAMICS IN AN ELLIPTICAL REF-
ERENCE ORBIT

For tetrahedron formations, the satellites are moving 

in an elliptical orbit. Hence, we should use the Tschauner-

Hempel equations, which were first derived by Tschauner 

& Hempel (1965), as follows.
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where x(t), y(t), z(t) are the relative-motion coordinates 

in the radial, along-track, and out-of-plane directions 

defined in a rotating coordinate system attached to the 

chief on the reference orbit as shown in Fig. 1, while the 

Fig. 1. Relative coordinate system.
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As the formation shifts in the region of interest, it must 

maintain a certain geometry to take useful scientific mea-

surements. In particular, the two important aspects to the 

formation geometry are the shape and size of the forma-

tion. The most common metrics, typically called quality 

factors, are the Glassmeier parameter (Robert et al. 1998) 

defined by Eq. (8), which compares the volume and sur-

face area of a tetrahedron with that of a regular tetrahe-

dron of the same average leg length.

* * 1= + +a a
gm

V S
Q

V S                                       
(8)

where V
a
 is the actual volume of the tetrahedron, S

a
 is the 

actual surface area of the tetrahedron, and V* and S* are 

the volume and surface area, respectively, of a regular tet-

rahedron whose average side length is L*. It is noted that 

the largest possible value of each ratio in Eq. (8) is unity. 

Consequently, the maximum value of Q
gm

 is three.

If we assume one of the spacecraft is the reference, 

then there are three relative position vectors that describe 

the relative geometry of the spacecraft, and we will define 

them as 1s


, 2s


, and 3s


. The vector 4s


, 5s


, and 6s


 depicted 

in Fig. 2 are used to compute the surface area in Eq. (10). 

Knowing these quantities, we can calculate the volume of 

the tetrahedron using
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The surface area of the actual tetrahedron is computed 

as follows. First, let
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Then, the surface area of the actual tetrahedron is given as

4
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3. PROBLEM FORMULATION

In this paper, we assumed the MMS-type mission to 

determine the initial conditions of tetrahedral forma-

tion. For MMS, to achieve a fundamental advancement 

in our understanding of the Earth’s magnetosphere 

and its dynamic interaction with the solar wind, a four-

spacecraft formation has to be a near regular tetrahedron 

formation, within a region defined by ±20 deg in true 

anomaly about the orbit apogee. Also, in the region of 

interest, the absence of maneuvers benefits the gathering 

of scientific data by limiting the orbital disturbances. 

Consequently, the thrust is zero in the region of interest. 

Although no maneuvers are allowed in the region of 

interest phase, several constraints on the formation are 

applied in the region of interest. To determine the quality 

of the formation, we adopted a performance metric that 

evaluates the shape of a tetrahedron consisting of the 

actual volume and the average side length. In addition 

to minimizing the cost function, periodic conditions at 

the beginning of the region of interest were adopted as 

boundary conditions to form optimal conditions in the 

next measurement phase in the region of interest.

The problem can be formulated to determine state 

variables ( , , , , ,′ ′ ′i i i i i ix x y y z z ) (i = 1, 2, 3, 4) in the region of 

interest to minimize the cost function given by Eq. (7). 

= − gmJ Q                                      
(7)

where, Q
gm

 is a quality factor defined by Eq. (8).

The boundary conditions are given by Eqs. (13 and 

14) and Eq. (16). Dynamic constraints are set as Eq. 

(2). For MMS mission, the region of interest is fixed  

(160 200θ< <  ) near the apogee. 

3.1 Quality Factor
Fig. 2. Relative vectors in the tetrahedron formation.
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ware (SOCS) (Betts & Huffman 2005) using the numerical 

values for the parameters shown in Table 1 and the nu-

merical values for the initial guesses of each satellite as 

follows. 
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where X
i
 (i = 1, 2, 3, 4) are relative states arranged in a reg-

ular tetrahedron which is characterized by position bases 

that place four satellites unit distance apart.
SOCS solves optimal control problems using a direct 

transcription method by which the dynamic system (Eq. 

4) is converted into a problem with a finite set of vari-

ables. The discretization scheme used in this paper is the 

second order trapezoidal method. This method produces 

a distinct set of nonlinear programming variables. Also, 

SOCS utilizes the mesh refinement algorithm to improve 

the accuracy of the discretization. The solutions are then 

determined using sequential quadratic programming.

Recall that the primary mission goal for the case of 

MMS we consider is to maximize the quality factor 

given by Eq. (8), in the region between 160 and 200 deg 

true anomaly. Fig. 3 shows the quality factor during one  

The average side length *L  can be calculated as follows:

( )*
1 2 3 4 5 6

1
6

= + + + + +L s s s s s s
                      

(12)

where s
i
 (i = 1, 2, 3, 4, 5, 6) is six unique side lengths be-

tween each spacecraft.

3.2 Constraints

The ideal geometry for this mission is a regular tetra-

hedron with 10 km spacing between each satellite, but in-

vestigators have noted that there is considerable flexibil-

ity here (Hughes 2004). In particular, the acceptable value 

of Q
gm

 is greater than Q
min

= 2.7 in the region of interest. 

Hence, the following path constraint on Q
gm

 is enforced in 

the region of interest.

min≥gmQ Q
                                 

(13)

Note that the Glassmeier metric is insensitive to the 

size of the tetrahedron, meaning an additional constraint 

is required to constrain the size of the tetrahedron. Al-

though an average interspacecraft separation of 10 km 

is considered ideal, acceptable science return is still pos-

sible for average separations ranging from 4 to 18 km 

(Hughes 2004). Hence, the following path constraint is 

enforced during the region of interest that bounds the av-

erage side length L* (L
min

= 4 km, L
max

= 18 km).

*
min max≤ ≤L L L

                                 
(14)

In addition to the aforementioned path constraints, we 

must satisfy periodicity conditions to have the spacecraft 

returning to the initial relative states. In a previous study, 

Sengupta & Vadali (2007) found the necessary conditions 

on the initial states that produce periodic solutions at an 

arbitrary true anomaly as follows.

2
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Also, Eq. (15) can be rearranged using the actual 

position ( , ,x y z ) and velocity ( , ,′ ′ ′x y z ) from Eq. (5) as 

follows.
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e e e
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4. RESULTS

The numerical solutions are obtained by a general pur-

pose optimization code: the Sparse Optimal Control Soft-

Table 1. Parameters used in the optimization and simulation.

            Parameter Value

Initial true anomaly, θi

Final true anomaly, θi

Earth’s radius, Re

Semimajor axis, a
Eccentricity, e
Qmin

Lmin

Lmax

160˚
200˚
6,378.14 km
6.6 Re

0.818
2.7
4 km
18 km

Fig. 3. Quality factor in orbit; dotted line represents the region of interest.
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Table 2 provides optimal initial relative states for MMS 

at the beginning of the region of interest. Initial states 

listed below enable scientific measurements repeatedly 

during the same phase without thruster maneuvering 

and maximize the quality factor.

5. CONCLUSIONS

In this paper, we present an algorithm that can provide 

initial conditions for formation flying at the beginning of a 

region of interest to maximize scientific mission goals for 

the case of a tetrahedron formation with relatively high 

eccentricities. Also, we found that there exist an optimal 

configuration and states of a tetrahedral satellite forma-

tion. As the periodicity condition is adopted, the relative 

position of satellites in the tetrahedral formation can be 

maintained during every scientific measurement phase 

without any thruster maneuvering. Because it is highly 

nonlinear and dependent on upwards of 20 variables, it is 

doubtful that a truly optimal solution can be found. How-

ever, finding a near-optimal solution is entirely plausible, 

and the evolution of quality factor we calculated shows 

sufficiently good performance. Hence, the optimal initial 

conditions determined in this work can be used to design 

an overall concept for reconfiguration maneuvers be-

tween different phases.
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