• Title/Summary/Keyword: Tensor Core

Search Result 21, Processing Time 0.023 seconds

An Application of Tucker Decomposition for Detecting Epilepsy EEG signals

  • Thieu, Thao Nguyen;Yang, Hyung-Jeong
    • Journal of Multimedia Information System
    • /
    • v.2 no.2
    • /
    • pp.215-222
    • /
    • 2015
  • Epileptic Seizure is a popular brain disease in the world. It affects the nervous system and the activities of brain function that make a person who has seizure signs cannot control and predict his actions. Based on the Electroencephalography (EEG) signals which are recorded from human or animal brains, the scientists use many methods to detect and recognize the abnormal activities of brain. Tucker model is investigated to solve this problem. Tucker decomposition is known as a higher-order form of Singular Value Decomposition (SVD), a well-known algorithm for decomposing a matric. It is widely used to extract good features of a tensor. After decomposing, the result of Tucker decomposition is a core tensor and some factor matrices along each mode. This core tensor contains a number of the best information of original data. In this paper, we used Tucker decomposition as a way to obtain good features. Training data is primarily applied into the core tensor and the remained matrices will be combined with the test data to build the Tucker base that is used for testing. Using core tensor makes the process simpler and obtains higher accuracies.

FINITE ELEMENT ANALYSIS OF ROTATIONAL HYSTERESIS LOSS USING TWO DIMENSIONAL PERMEABILITY TENSOR

  • Lee, Hak-Yong;Jung, Hyun-Kyo;Hahn, Song-Yop;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.837-840
    • /
    • 1995
  • Finite element analysis using two dimensional magnetic permeabillity tensor that can represents phase lag between magnetic field intensity and flux density under rotational flux is examined. Considered problem is confined to two dimensional magnetostatic case. And we applied proposed method to calculate the core loss of the test model and compare the result with that of experiment.

  • PDF

Diagonal Magneto-impedance in Cu/Ni80Fe20 Core-Shell Composite Wire (Cu/Ni80Fe20 코어/쉘 복합 와이어에서 대각(Diagnonal) 자기임피던스)

  • Cho, Seong Eon;Goo, Tae Jun;Kim, Dong Young;Yoon, Seok Soo;Lee, Sang Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.129-137
    • /
    • 2015
  • The Cu(radius ra = $95{\mu}m$)/$Ni_{80}Fe_{20}$(outer radius $r_b$ = $120{\mu}m$) core/shell composite wire is fabricated by electrodeposition. The two diagonal components of impedance tensor for the Cu/$Ni_{80}Fe_{20}$ core/shell composite wire in cylindrical coordinates, $Z_{zz}$ and $Z_{{\theta}{\theta}}$, are measured as a function of frequency in 10 kHz~10 MHz and external static magnetic field in 0 Oe~200 Oe. The equations expressing the diagonal $Z_{zz}$ and $Z_{{\theta}{\theta}}$ in terms of diagonal components of complex permeability tensor, ${\mu}^*_{zz}$ and ${\mu}^*_{{\theta}{\theta}}$, are derived from Maxwell's equations. The real and imaginary parts of ${\mu}^*_{zz}$(f) and ${\mu}^*_{{\theta}{\theta}}$(f) spectra are extracted from the measured $Z_{zz}$(f) and $Z_{{\theta}{\theta}}$(f) spectra, respectively. It is presened that the extraction of ${\mu}^*_{zz}$(f) and ${\mu}^*_{{\theta}{\theta}}$(f) spectra from the diagonal impedance spectra can be a versatile tool to investigate dymanic magnetization process in the core/shell composite wire.

Face Recognition Using Tensor Subspace Analysis in Robot Environments (로봇 환경에서 텐서 부공간 분석기법을 이용한 얼굴인식)

  • Kim, Sung-Suk;Kwak, Keun-Chang
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.300-307
    • /
    • 2008
  • This paper is concerned with face recognition for human-robot interaction (HRI) in robot environments. For this purpose, we use Tensor Subspace Analysis (TSA) to recognize the user's face through robot camera when robot performs various services in home environments. Thus, the spatial correlation between the pixels in an image can be naturally characterized by TSA. Here we utilizes face database collected in u-robot test bed environments in ETRI. The presented method can be used as a core technique in conjunction with HRI that can naturally interact between human and robots in home robot applications. The experimental results on face database revealed that the presented method showed a good performance in comparison with the well-known methods such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) in distant-varying environments.

  • PDF

Study on Development of Graphic User Interface for TensorFlow Based on Artificial Intelligence (인공지능 기반의 TensorFlow 그래픽 사용자 인터페이스 개발에 관한 연구)

  • Song, Sang Gun;Kang, Sung Hong;Choi, Youn Hee;Sim, Eun Kyung;Lee, Jeong- Wook;Park, Jong-Ho;Jung, Yeong In;Choi, Byung Kwan
    • Journal of Digital Convergence
    • /
    • v.16 no.5
    • /
    • pp.221-229
    • /
    • 2018
  • Machine learning and artificial intelligence are core technologies for the 4th industrial revolution. However, it is difficult for the general public to get familiar with those technologies because most people lack programming ability. Thus, we developed a Graphic User Interface(GUI) to overcome this obstacle. We adopted TensorFlow and used .Net of Microsoft for the develop. With this new GUI, users can manage data, apply algorithms, and run machine learning without coding ability. We hope that this development will be used as a basis for developing artificial intelligence in various fields.

A Study on the Performance Improvement of Software Digital Filter using GPU (GPU를 이용한 소프트웨어 디지털 필터의 성능개선에 관한 연구)

  • Yeom, Jae-Hwan;Oh, Se-Jin;Roh, Duk-Gyoo;Jung, Dong-Kyu;Hwang, Ju-Yeon;Oh, Chungsik;Kim, Hyo-Ryoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.153-161
    • /
    • 2018
  • This paper describes the performance improvement of Software (SW) digital filter using GPU (Graphical Processing Unit). The previous developed SW digital filter has a problem that it operates on a CPU (Central Processing Unit) basis and has a slow speed. The GPU was introduced to filter the data of the EAVN (East Asian VLBI Network) observation to improve the operation speed and to process data with other stations through filtering, respectively. In order to enhance the computational speed of the SW digital filter, NVIDIA Titan V GPU board with built-in Tensor Core is used. The processing speed of about 0.78 (1Gbps, 16MHz BW, 16-IF) and 1.1 (2Gbps, 32MHz BW, 16-IF) times for the observing time was achieved by filtering the 95 second observation data of 2 Gbps (512 MHz BW, 1-IF), respectively. In addition, 2Gbps data is digitally filtered for the 1 and 2Gbps simultaneously observed with KVN (Korean VLBI Network), and compared with the 1Gbps, we obtained similar values such as cross power spectrum, phase, and SNR (Signal to Noise Ratio). As a result, the effectiveness of developed SW digital filter using GPU in this research was confirmed for utilizing the data processing and analysis. In the future, it is expected that the observation data will be able to be filtered in real time when the distributed processing optimization of source code for using multiple GPU boards.

Diffusion Tensor-Derived Properties of Benign Oligemia, True "at Risk" Penumbra, and Infarct Core during the First Three Hours of Stroke Onset: A Rat Model

  • Chiu, Fang-Ying;Kuo, Duen-Pang;Chen, Yung-Chieh;Kao, Yu-Chieh;Chung, Hsiao-Wen;Chen, Cheng-Yu
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1161-1171
    • /
    • 2018
  • Objective: The aim of this study was to investigate diffusion tensor (DT) imaging-derived properties of benign oligemia, true "at risk" penumbra (TP), and the infarct core (IC) during the first 3 hours of stroke onset. Materials and Methods: The study was approved by the local animal care and use committee. DT imaging data were obtained from 14 rats after permanent middle cerebral artery occlusion (pMCAO) using a 7T magnetic resonance scanner (Bruker) in room air. Relative cerebral blood flow and apparent diffusion coefficient (ADC) maps were generated to define oligemia, TP, IC, and normal tissue (NT) every 30 minutes up to 3 hours. Relative fractional anisotropy (rFA), pure anisotropy (rq), diffusion magnitude (rL), ADC (rADC), axial diffusivity (rAD), and radial diffusivity (rRD) values were derived by comparison with the contralateral normal brain. Results: The mean volume of oligemia was $24.7{\pm}14.1mm^3$, that of TP was $81.3{\pm}62.6mm^3$, and that of IC was $123.0{\pm}85.2mm^3$ at 30 minutes after pMCAO. rFA showed an initial paradoxical 10% increase in IC and TP, and declined afterward. The rq, rL, rADC, rAD, and rRD showed an initial discrepant decrease in IC (from -24% to -36%) as compared with TP (from -7% to -13%). Significant differences (p < 0.05) in metrics, except rFA, were found between tissue subtypes in the first 2.5 hours. The rq demonstrated the best overall performance in discriminating TP from IC (accuracy = 92.6%, area under curve = 0.93) and the optimal cutoff value was -33.90%. The metric values for oligemia and NT remained similar at all time points. Conclusion: Benign oligemia is small and remains microstructurally normal under pMCAO. TP and IC show a distinct evolution of DT-derived properties within the first 3 hours of stroke onset, and are thus potentially useful in predicting the fate of ischemic brain.

Time-Resolved Infrared Spectroscopy of Molecular Reorientation During FLC Electro-Optic Switching

  • Jang, Won-Gun;Clark, Noel A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1112-1117
    • /
    • 2003
  • Polarized Fourier transform infrared (IR) absorption is used to probe molecular conformation in a ferroelectric liquid crystal (FLC) during the reorientation induced by the external field. Spectra of planar aligned cells of FLC W314 are measured as functions of IR polarizer orientation and electric field applied to the FLC. The time evolution of the dichroism of the absorbance due to biphenyl core and alkyl tail molecular vibration modes, is observed. Static IR dichroism experiments show a W314 dichroism structure in which the principal axis of dielectric tensor from molecular core vibration are tilted further from the smectic layer normal than those of the tail. This structure indicates the effective binding site in which the molecules are confined in the Sm-C phase has, on average, "zig-zag" shape and this zig-zag binding site structure is rigidly maintained while the molecular axis rotates about the layer normal during field-induced switching.

  • PDF

Influence of a weak superposed centripetal flow in a rotor-stator system for several pre-swirl ratios

  • Nour, Fadi Abdel;Rinaldi, Andrea;Debuchy, Roger;Bois, Gerard
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.2
    • /
    • pp.49-59
    • /
    • 2012
  • The present study is devoted to the influence of a superposed radial inflow in a rotor-stator cavity with a peripheral opening. The flow regime is turbulent, the two boundary layers being separated by a core region. An original theoretical solution is obtained for the core region, explaining the reason why a weak radial inflow has no major influence near the periphery of the cavity but strongly affects the flow behavior near the axis. The validity of the theory is tested with the help of a new set of experimental data including the radial and tangential mean velocity components, as well as three components of the Reynolds stress tensor measured by hot-wire anemometry. The theoretical results are also in good agreement with numerical results obtained with the Fluent code and experimental data from the literature.

Development of two dimensional full wave spectral code for the ICRF heating and current drive research including scrape-off layer in tokamaks

  • Kim, S.H.;Kwak, J.G.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3724-3731
    • /
    • 2022
  • It is important for an ICRF full wave code to simulate the SOL (Scrape Off Layer) plasma as well as the core inside of the LCFS (Last Closed Flux Surface) for the precise prediction of the coupling between the antenna and the core plasma in tokamaks. To this end, a two dimensional full wave code based on a Fourier spectral algorithm has been developed. The spectral algorithm and procedures are described and the simulation results for the minority heating in KSTAR are reported including electric field, power absorption and power flux.