Browse > Article
http://dx.doi.org/10.4283/JKMS.2015.25.4.129

Diagonal Magneto-impedance in Cu/Ni80Fe20 Core-Shell Composite Wire  

Cho, Seong Eon (Department of Physics, Andong National University)
Goo, Tae Jun (Department of Physics, Andong National University)
Kim, Dong Young (Department of Physics, Andong National University)
Yoon, Seok Soo (Department of Physics, Andong National University)
Lee, Sang Hun (Department of Radiological Science, Kaya University)
Abstract
The Cu(radius ra = $95{\mu}m$)/$Ni_{80}Fe_{20}$(outer radius $r_b$ = $120{\mu}m$) core/shell composite wire is fabricated by electrodeposition. The two diagonal components of impedance tensor for the Cu/$Ni_{80}Fe_{20}$ core/shell composite wire in cylindrical coordinates, $Z_{zz}$ and $Z_{{\theta}{\theta}}$, are measured as a function of frequency in 10 kHz~10 MHz and external static magnetic field in 0 Oe~200 Oe. The equations expressing the diagonal $Z_{zz}$ and $Z_{{\theta}{\theta}}$ in terms of diagonal components of complex permeability tensor, ${\mu}^*_{zz}$ and ${\mu}^*_{{\theta}{\theta}}$, are derived from Maxwell's equations. The real and imaginary parts of ${\mu}^*_{zz}$(f) and ${\mu}^*_{{\theta}{\theta}}$(f) spectra are extracted from the measured $Z_{zz}$(f) and $Z_{{\theta}{\theta}}$(f) spectra, respectively. It is presened that the extraction of ${\mu}^*_{zz}$(f) and ${\mu}^*_{{\theta}{\theta}}$(f) spectra from the diagonal impedance spectra can be a versatile tool to investigate dymanic magnetization process in the core/shell composite wire.
Keywords
magneto-impedance tensor; complex permeability tensor; core/shell composite wire; magnetic relaxation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Mohri, T. Kohsawa, K. Kawashima, H. Yoshida, and L. V. Panina, IEEE Trans. Magn. 28, 3150 (1992).   DOI   ScienceOn
2 M.-H. Phan and H.-X. Peng, Prog. Mater. Sci. 53, 323 (2008).   DOI   ScienceOn
3 http://www.aichi-mi.com/.
4 P. Kollu, S. S. Yoon, G. W. Kim, C. S. Angani, and C. G. Kim, J. Magn. 15, 194 (2010).   DOI   ScienceOn
5 M. A. Correa, F. Bohn, R. B. da Silva, and R. L. Sommer, J. Appl. Phys. 116, 243904 (2014).   DOI   ScienceOn
6 A. S. Antonov, A. L. Rakhmanov, N. A. Buznikov, A. F. Prokoshin, A. B. Granovsky, N. S. Perov, and N. A. Usov, IEEE Trans. Magn. 35, 3640 (1999).   DOI   ScienceOn
7 M. H. Phan, H. X. Peng, M. T. Tung, N. V. Dung, and N. H. Nghi, J. Magn. Magn. Mater. 316, 244 (2007).   DOI   ScienceOn
8 L. Chen, Y. Zhou, C. Lei, and Z. M. Zhou, Mater. Sci. Eng. B 172, 101 (2010).   DOI   ScienceOn
9 M. A. Correa1, F. Bohn1, V. M. Escobar, M. S. Marques, A. D. C. Viegas, L. F. Schelp, and R. L. Sommer, J. Appl. Phys. 110, 093914 (2011).   DOI   ScienceOn
10 A. C. Mishra, T. Sahoo, V. Srinivas, and A. K. Thakur, Physica B: Condensed Matter 406, 645 (2011).   DOI
11 D. L. Chen, X. Li, H. L. Pan, H. Y. Luan, and Z. J. Zhao, Nano-Micro Lett. 6, 227 (2014).   DOI
12 S. S. Yoon, S. E. Cho, and D. Y. Kim, J. Korean Magn. Soc. 25, 227 (2015).
13 T. Nakamura, J. Magn. Magn. Mater. 168, 299 (1997).   DOI   ScienceOn
14 C. G. Kim, S. S. Yoon, and S. C. Yu, Appl. Phys. Lett. 76, 3463 (2000).   DOI   ScienceOn
15 S. S. Yoon and C. G. Kim, Appl. Phys. Lett. 78, 3280 (2001).   DOI   ScienceOn
16 S. S. Yoon, S. C. Yu, G. H. Ryu, and C. G. Kim, J. Appl. Phys. 85, 5432 (1999).   DOI   ScienceOn
17 www.originlab.com/index.aspx?go=Products/Origin/DataAnalysis/CurveFitting/Nonlinear-Fitting.