• Title/Summary/Keyword: Tensile properties

Search Result 5,785, Processing Time 0.039 seconds

An Analytical Study on Prediction Fire Resistance of CFT Column in ISO Fire (표준화재조건 CFT기둥 내화성능예측을 위한 해석적 연구)

  • Kim, Hyung-Jun;Kim, Heun-Youl
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.257-260
    • /
    • 2008
  • The heat resistance of steel materials tends to weaken due to its high heat transfer properties, which might result in deteriorated strength because of rapidly rising temperature on surface in a fire. Particularly in case of CFT column that bears tensile stress of the structure on its external steel members, a numerical analysis on deterioration of strength and variation of stress shall be first carried out to ensure the structure will have sufficient fire resistance. In the study, based on values obtained from the high temperature material property test of steel materials and concrete, the test to forecast the fire behavior of CFT column was conducted using a finite element analysis method (ABAQUS). An Analysis in a bid to predict the heat transfer and the behavior characteristics by varying the strength of the concrete filled to the range of 40MPA and 50MPA was carried out. As a result of analysis of CFT column on condition of 180-minute exposure under the standard fire condition, 123mm of strain appeared with 40MPA model, while 91mm contraction with 50MPA model.

  • PDF

Prediction of Shear Strength of FRP Concrete Beams without Stirrups by Artificial Neural Networks (인공신경망에 의한 스터럽 없는 FRP 콘크리트 보의 전단강도 예측)

  • Lee, Cha-Don;Kim, Won-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.801-804
    • /
    • 2008
  • Fiber reinforced plastics (FRP) are light in weight, non-corrosive and exhibits high tensile strength. FRPs having superior material properties to corrosive steels have been widely replacing steel bars or tendons used in concrete structures as flexural reinforcements. Although current design guidelines for estimating shear strength of FRP concrete beam follow the format of conventional reinforced concrete design method, there are noticeable differences among the existing formulas in calculating the contributions of concrete to shear resistance. In this paper, the artificial neural network (ANN) technique is employed as an analytical alternative to existing methods for predicting shear capacity of FRP concrete beams. Influential factors on shear strength were identified through literature review and input in ANN and the ANN was trained for the target ultimate shear obtained from database. The results from ANN were compared with existing formulas for its accuracy. It was found that the developed ANN were more closely predicting the test data than those of the currently available predictive equations.

  • PDF

The Evaluation of Mechanical Properties of Ultra High Performance Concrete with Using Steel Fiber of Wave Type (물결형 강섬유를 이용한 초고성능 콘크리트의 역학적 특성 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.353-356
    • /
    • 2008
  • UHPC which was a structural material exhibiting very remarkable mechanical performances with compressive strength, tensile strength and flexural strength rising up to 200MPa, 15MPa and 35MPa, respectively. In addition, this material presents exceptional durability regard to the very low diffusion and penetration speeds of noxious substances like chloride ions This study was carry out to evaluate the effect of flexural behavior according to steel fiber type in UHPC. The results is showing that the steel fiber type have remarkable influence flexural strength Addition to it is showing that steel fiber type made little difference in the first cracking strength but considerable gap in the ultimate flexural strength to use the steel fiber of wave type.

  • PDF

Wear Property of SACM645 Material with DLC Coating (DLC 코팅된 SACM645 소재의 마모 특성)

  • Kim, Nam-Soek;Nam, Ki-Woo;Park, Jong-Nam;Ahn, Seok-Hwan;Kim, Hyun-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.76-80
    • /
    • 2010
  • Oil hydraulic piston pumps are being extensively used around the world, because of their simple design, light weight, effective cost, etc. An oil hydraulic pump is likely to have the serious problems of high leakage, friction, and low energy efficiency after a long period of use. In an oil hydraulic piston pump, the clearance between the valve block and piston plays an important role for volumetric and overall efficiency. In this study, the wear property of the SACM645 material with DLC coating used for a hydraulic piston pump was determined by experimentation with variable heat treatment. To investigate the effect according to the piston surface condition, five different types of specimens were prepared. The maximum tensile strengths of the QT and QT Nitration specimens had similar values of about 800 MPa, but the strains indicated a big difference. In a wear test, the wear characteristic of the DLC coating specimen was shown to be excellent. The QT, QT + IH, QT + Nitration, and matirx specimen showed similar wear characteristics. In the case of a dry condition without oil, the DLC coating specimen had good wear resistance, with no wear shown.

A Rice Noodle Making Procedure for Evaluating Rice Flour Noodle-Making Potential (제면 적성 시험을 위한 쌀국수 제조 방법)

  • Choi, Soo Young;Cho, Jun Hyeon;Koh, Bong Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1823-1829
    • /
    • 2012
  • Rice noodles are popular worldwide; however, no standard procedure is available for screening the potential for rice flour to make good quality noodles. This study reports two standard laboratory-scale procedures for preparing flat (sheet type) and extruded noodles. Eight rice cultivars were examined and the cooking loss and tensile strength of cooked noodles were determined. It was relatively easy to control the amount of water added to extruded noodles, whereas flat noodles were very sensitive to the amount of water used. Sheet formation was determined based on the amount of moisture content during preparation, and the Chenmaai cultivar was found to be most appropriate for both noodles making procedures and cooking and textural properties. Finally, good noodle making cultivar such as Chenmaai was less likely to be affected by the milling method.

Synthesis and Characterization of Phosphoric Acid-doped Poly (2,5-benzimidazole) Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells (고온 고분자 연료전지용 인산 도핑 폴리(2,5-벤지이미다졸) 막의 제조 및 특성)

  • Nguyen, Thi Xuan Hien;Mishra, Ananta Kumar;Choi, Ji-Sun;Kim, Nam-Hoon;Lee, Joong-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.26-33
    • /
    • 2012
  • Phosphoric acid-doped poly (2,5-benzimidazole) (DABPBI) was prepared by condensation polymerization of 3,4-diaminobenzoic acid for high temperature proton electrolyte membrane fuel cells. The membranes were casted directly using a hot-press unit and characterized by fourier transform infrared spectroscopy, thermogravimetric analysis, conductivity measurement, scanning electron microscopy and tensile test. The proton conductivities of DABPBI are observed to be 0.062 and 0.018 $S{\cdot}cm^{-1}$ under 30 and 1% relative humidity, respectively at a temperature of $120^{\circ}C$ which is appreciably higher than that of Nafion 115 under similar conditions. The DABPBI membrane has demonstrated excellent thermo- mechanical properties and proton conductivity suggesting its suitability as a high temperature membrane.

Effects of differently hardened brass foil laminate on the electromechanical property of externally laminated CC tapes

  • Bautista, Zhierwinjay;Shin, Hyung-Seop;Mean, Byoung Jean;Lee, Jae-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.21-24
    • /
    • 2016
  • The mechanical properties of REBCO coated conductor (CC) wires under uniaxial tension are largely determined by the thick component layers in the architecture, namely, the substrate and the stabilizer or even the reinforcement layer. Depending on device applications of the CC tapes, it is necessary to reinforce thin metallic foils externally to one-side or both sides of the CC tapes. Due to the external reinforcement of brass foils, it was found that this could increase the reversible strain limit from the Cu-stabilized CC tapes. In this study, the effects of differently hardened brass foil laminate on the electromechanical property of CC tapes were investigated under uniaxial tension loading. The tensile strain dependence of the critical current ($I_c$) was measured at 77 K and self-field. Depending on whether the $I_c$ of CC tapes were measured during loading or after unloading, a reversible strain (or stress) limit could be determined, respectively. The both-sides of the Cu-stabilized CC tapes were laminated with brass foils with different hardness, namely 1/4H, 1H and EH. From the obtained results, it showed that the yield strength of the brass laminated CC tapes with EH brass foil laminate was comparable to the one of the Cu-stabilized CC tape due to its large yield strength even though its large volume fraction. It was found that the brass foil with different hardness was mainly sensitive on the stress dependence of $I_c$, but not on the strain sensitivity due to the residual strain induced in the laminated CC tapes during unloading.

Physical Properties of Porous Concrete Using Admixtures (혼화재를 혼입한 투수콘크리트의 물리적 특성)

  • 채창우
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.257-265
    • /
    • 2002
  • Porous concrete has good permeability sine it contains about 10∼20 % of voids, had has been introduced to korea in early 1980's. It, however, has problems such as a lack of optimized mixture, low strength and durability, and etc. It is thus Interesting to manufacture high-performance porous concrete satisfying the mechanical characteristics to be supplied In practical construction. The results of this study were as follows : the compressive strength was 132∼221 kgf/$\textrm{cm}^2$, the splitting tensile strength was 15∼25 kgf/$\textrm{cm}^2$, the flexural strength was 36∼54 kgf/$\textrm{cm}^2$, and the coefficient permeability was 1.05${\times}$10$\^$-1/ ∼ 9.20${\times}$10$\^$-2/ cm/sec. In order to change the maximum size of aggregate, It is believed that other mixtures should be studied further.

Three-Dimensional Thermoforming Analysis of an Inner Case with Three Cavities for Refrigerator (3개의 캐비티를 가지는 냉장고 내상의 3차원 진공 열성형 해석)

  • Lee, Ho Jin;Ahn, Dong Gyu;Lee, Sang Hun;Ki, Jun Chul;Ko, Jae Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.505-511
    • /
    • 2016
  • The aim of this study is to investigate the thermoforming characteristics of an inner case with three refrigerator cavities using three-dimensional(3D) thermoforming analyses. We perform fundamental formability analyses using a 3D model of the mould for the inner case. We carry out tensile tests at the elevated temperature to examine the properties and characteristics of the thermoformed material. Then, we design sub-processes of the thermoforming process for the inner case. In addition, we develop suitable finite-element models for different sub-processes. We investigate the deformed shapes and thickness distributions of the inner case for different sub-processes using the results of the thermoforming analysis. Finally, we discuss the formability and thermoforming characteristics of the inner case with three cavities.

Half-dome Thermo-forming Tests of Thermoplastic Glass Fiber/PP Composites and FEM Simulations Based on Non-orthogonal Constitutive Models (열가소성 유리섬유/PP 복합재의 반구돔 열성형 평가 및 비직교 구성방정식을 이용한 FEM 수치해석)

  • Lee, Wonoh
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.236-242
    • /
    • 2016
  • In this work, tensile and in-plane shear tests for thermoplastic glass fiber/polypropylene composites were performed at a thermo-forming temperature and their properties were characterized and mathematically expressed by using the non-orthogonal constitutive model. As for the thermo-forming test, half-dome experiments were carried out by varying the usage of a releasing agent and the weight of holders. As results, the optimum final shape having well-aligned symmetry and no wrinkle formation was obtained when the releasing agent was used, and it was found that the careful control of a holding force is crucial to manufacture the healthy product. Furthermore, FEM simulations based on the non-orthogonal model showed similar final shapes and tendency of wrinkle formation with experimental results, and confirmed that wrinkles increase with less holding force and higher punch force is required under high frictional condition.