DOI QR코드

DOI QR Code

Three-Dimensional Thermoforming Analysis of an Inner Case with Three Cavities for Refrigerator

3개의 캐비티를 가지는 냉장고 내상의 3차원 진공 열성형 해석

  • 이호진 (조선대학교 기계공학과) ;
  • 안동규 (조선대학교 기계공학과) ;
  • 이상훈 ((주) 삼성전자 생활가전사업부) ;
  • 기준철 ((주) 삼성전자 생활가전사업부) ;
  • 고재홍 ((주) 삼성전자 생활가전사업부)
  • Received : 2016.01.31
  • Accepted : 2016.03.15
  • Published : 2016.05.01

Abstract

The aim of this study is to investigate the thermoforming characteristics of an inner case with three refrigerator cavities using three-dimensional(3D) thermoforming analyses. We perform fundamental formability analyses using a 3D model of the mould for the inner case. We carry out tensile tests at the elevated temperature to examine the properties and characteristics of the thermoformed material. Then, we design sub-processes of the thermoforming process for the inner case. In addition, we develop suitable finite-element models for different sub-processes. We investigate the deformed shapes and thickness distributions of the inner case for different sub-processes using the results of the thermoforming analysis. Finally, we discuss the formability and thermoforming characteristics of the inner case with three cavities.

이 연구에서는 3차원 진공 열성형 해석을 통하여 3개의 캐비티를 가지는 냉장고 내상의 진공 열성형 특성을 분석/고찰 하고자 한다. 3개의 캐비티를 가지는 냉장고 내상 금형의 3차원 모델을 이용하여 냉장고 내상 제품의 기초 성형성을 분석하였다. 고온 인장시험을 수행하여 진공 열성형 재료에 대한 물성데이터 도출과 재료 특성 분석을 하였다. 3개의 캐비티를 가지는 냉장고 내상의 열성형 공정의 세부 공정들을 설계하고 세부 공정들에 적합한 유한요소해석 모델을 개발하였다. 각 세부 공정들에 대한 3차원 유한요소해석을 수행하여 제품의 변형 형상 및 두께 분포를 분석하였다. 최종적으로 3개의 캐비티를 가지는 냉장고 내상의 성형성과 진공 열성형 특성을 고찰하였다.

Keywords

References

  1. Mark, J. E., 1999, "Polymer Data Handbook," Oxford Uniiversity Press, Inc.
  2. Throne, J. L., 1996, "Technology of Thermoforming," Hanser Publisher.
  3. Throne, J. L., 2008, "Understanding Thermoforming," Hanser Publisher.
  4. Yoon, S. T. and Park, K., 2015, "Design and Analysis of Shell Runners to Improve Cooling Efficiency in Injection Molding of Subminiature Lens," Trans. Korean Soc. Mech. Eng. A, Vol. 39, No. 10, pp. 1021-1028. https://doi.org/10.3795/KSME-A.2015.39.10.1021
  5. Cha, S. W. and Yoon, J. D., 2000, "Change of Glass Transition Temperature of PETG Containing Gas," Trans. Korean Soc. Mech. Eng. A, Vol. 24, No. 4, pp. 824-829. https://doi.org/10.22634/KSME-A.2000.24.4.824
  6. Lee, H. J. and Ahn, D. G., 2015, "Manufacturing of a Large-Sized Flat Panel Airlift Photobioreactor (FPA PBR) Case with Characteristic Shapes using a Thermoforming Process," Journal of Mechanical Science and Technology, Vol. 29, No. 12, pp. 5099-5105. https://doi.org/10.1007/s12206-015-1107-9
  7. Warby, M., Whiteman, J., Jiang, W. G., Warwick, P. and Wright, T., 2003, "Finite Element Simulation of Thermoforming Processes for Polymer Sheets," Mathematics and Computers in Simulation, Vol. 61, No. 3, pp. 209-218. https://doi.org/10.1016/S0378-4754(02)00077-0
  8. Wiesche, S., 2004, "Industrial Thermoforming Simulation of Automotive Fuel Tanks," Applied Thermal Engineering, Vol. 24, No. 16, pp. 2391-2409. https://doi.org/10.1016/j.applthermaleng.2004.03.003
  9. Ahn, D. G., Ahn, Y. S. and Jung, S. H., 2012, "A Study on the Development of a Thin Flat Panel Photo-Bioreactor Case," Journal of Korean Society for Precision Engineering, Vol. 29, No. 9, pp. 946-957. https://doi.org/10.7736/KSPE.2012.29.9.946
  10. Wang, C. H. and Nied, H. F., 1999, "Temperature Optimization for Improved Thickness Control in Thermoforming," Journal of Materials Processing & Manufacturing Science, Vol. 8, No. 2, pp. 113-126. https://doi.org/10.1106/L8QJ-JG1C-444T-7P1H
  11. Lee, H. J. and Ahn, D. G., 2015, "Methodology of Three-Dimensional Thermoforming Analysis to Simulate Forming Process of Medium and Large-Sized Plastic Parts," Journal of Mechanical Science and Technology, Vol. 32, No. 11, pp. 953-960.
  12. G'sell, C. and Jonas, J. J., 1979, "Determination of the Plastic Behavior of Solid Polymers at Constant True Strain Rate," Journal of Material Science, Vol. 14, No. 3, pp. 583-591. https://doi.org/10.1007/BF00772717
  13. G'sell, C., Aly-Helal, N. A. and Jonas, J. J., 1983, "Effect of Stress Triaxiality on Neck Propagation During the Tensile Stretching of Solid Polymers," Journal of Material Science, Vol. 18, No. 6, pp. 1731-1742. https://doi.org/10.1007/BF00542069
  14. Kim, G., Lee, K. and Kang, S., 2009, "Prediction of the Film Thickness Distribution and Pattern Change During Film Insert Thermoforming," Polymer Engineering & Science, Vol. 49, No. 11, pp. 2195-2203. https://doi.org/10.1002/pen.21467
  15. Cook, R. D., Malkus, D. S., Plesha, M. E. and Witt, R. J., 2002, "Concepts and Applications of Finite Element Analysis-4th Edition," Wiley, pp. 318-319.