Browse > Article
http://dx.doi.org/10.7316/khnes.2012.23.1.026

Synthesis and Characterization of Phosphoric Acid-doped Poly (2,5-benzimidazole) Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells  

Nguyen, Thi Xuan Hien (BIN Fusion Research Team, Dept. of Polymer & Nano Engineering, Chonbuk National University)
Mishra, Ananta Kumar (BIN Fusion Research Team, Dept. of Polymer & Nano Engineering, Chonbuk National University)
Choi, Ji-Sun (Fuel Cell Core Technology Research Center, Jeonbuk Technopark)
Kim, Nam-Hoon (Dept. of Hydrogen and Fuel Cell Engineering, Chonbuk National University)
Lee, Joong-Hee (BIN Fusion Research Team, Dept. of Polymer & Nano Engineering, Chonbuk National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.23, no.1, 2012 , pp. 26-33 More about this Journal
Abstract
Phosphoric acid-doped poly (2,5-benzimidazole) (DABPBI) was prepared by condensation polymerization of 3,4-diaminobenzoic acid for high temperature proton electrolyte membrane fuel cells. The membranes were casted directly using a hot-press unit and characterized by fourier transform infrared spectroscopy, thermogravimetric analysis, conductivity measurement, scanning electron microscopy and tensile test. The proton conductivities of DABPBI are observed to be 0.062 and 0.018 $S{\cdot}cm^{-1}$ under 30 and 1% relative humidity, respectively at a temperature of $120^{\circ}C$ which is appreciably higher than that of Nafion 115 under similar conditions. The DABPBI membrane has demonstrated excellent thermo- mechanical properties and proton conductivity suggesting its suitability as a high temperature membrane.
Keywords
Poly(2,5-benzimidazole); Membrane; High temperature proton electrolyte membrane fuel cells; Mechanical property; Proton conductivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E. W. Choe, L. S. Ramanathan, S. Yu, and B. C. Benicewicz, "Synthesis and characterization of pyridine-based poly benzimidazoles for high temperature polymer electrolyte membrane fuel cell applications", Fuel Cells, Vol. 5, No. 2, 2005, p. 287.   DOI   ScienceOn
2 C. E. Hughes, S. Haufe, B. Angerstein, R. Kalim, U. Mahr, A. Reiche, and M. Baldus, "Probing structure and dynamics in poly[2,2′-(m-phenylene)-5,5′-bibenzimidazole] fuel cells with magic-angle spinning NMR", J. Phys. Chem., Vol. 108, No. 36, 2004, p. 13626.   DOI
3 S. Bhadra, N. H. Kim, J. S. Choi, K. Y. Rhee, and J. H. Lee, "Hyperbranched poly (benzimidazoleco-benzene) with honeycomb structure as a membrane for high temperature proton-exchange membrane fuel cells", J. Power Sources, Vol. 195, No. 9, 2010, p. 2470.   DOI   ScienceOn
4 H. J. Kim, S. Y. Cho, S. J. An, Y. C. Eun, J. Y. Kim, H. K. Yoon, H. J. Kweon, and K. H. Yew, "Synthesis of poly (2,5-benzimidazole) for use as a fuel-cell membrane", Macromol. Rapid Commun., Vol. 25, No. 8, 2004, p. 894.   DOI   ScienceOn
5 J. A. Asensio and P. Gomez-Romero, "Recent developments on proton conducting Poly (2,5-benzimidazole) (ABPBI) membranes for high temperature polymer electrolyte membrane fuel cells", Fuel Cells, Vol. 5, No. 3, 2005, p. 336.   DOI   ScienceOn
6 J. A. Asensio, S. Borros, and P. Gomez-Romero, "Polymer electrolyte fuel cells based on phosphoric acid-impregnated poly (2,5-benzimidazole) membranes", J. Electrochem. Soc., Vol. 151 No. 2, 2004, p. A304.   DOI   ScienceOn
7 J. A. Asensio, S. Borros, and P. Gomez-Romero, "Proton-conducting membranes based on poly (2,5-benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting", J. Membrane Sci., Vol. 241, No. 1, 2004, p. 89.   DOI   ScienceOn
8 T. H. Kim, T. W. Lim, Y. S. Park, K. Shin, and J. C. Lee, "Proton-conducting zirconium pyrophosphate/ poly (2,5-benzimidazole) composite membranes prepared by a PPA direct casting method", Macromol. Chem. Phys., Vol. 208, No. 21, 2007, p. 2293.   DOI   ScienceOn
9 J. A. Asensio, S. Borros, and P. Gomez-Romero, "Proton-conducting polymers based on benzimidazoles and sulfonated benz-imidazoles", J. Polym. Sci., Part A: Polym. Chem., Vol. 40, No. 21, 2002, p. 3703.   DOI   ScienceOn
10 J. A. Asensio, S. Borros, and P. Gomez-Romero, "Sulfonated poly (2,5-benzimidazole) (SABPBI) impregnated with phosphoric acid as proton conducting membranes for polymer electrolyte fuel cells", Electrochim. Acta, Vol. 49, No. 25, 2004, p. 4461.   DOI   ScienceOn
11 C. Heitner-Wirguin, "Recent advances in perfluorinated ionomer membranes: structure, properties and applications", J. Membr. Sci., Vol. 120, No. 1, 1996, p. 1.   DOI   ScienceOn
12 K. A. Mauritz and R. B. Moore, "State of understanding of nafion", Chem. Rev., Vol. 104, No. 10, 2004, p. 4535.   DOI   ScienceOn
13 S. Bhadra, N. H. Kim, and J. H. Lee, "A new selfcross-linked, net-structured, proton conducting polymer membrane for high temperature proton exchange membrane fuel cells", J. Membr. Sci., Vol. 349, No. 1-2, p. 304.   DOI
14 T. H. Lim and H. J. Kim, "Development and application of high temperature proton exchange membrane fuel cells", Trans. of the Korea Hydrogen and New Energy Society, Vol. 18, No. 4, 2007, p. 439.   과학기술학회마을
15 G. Qian, D. W. Smith Jr., and B. C. Benicewicz, "Synthesis and characterization of high molecular weight perfluorocyclobutyl containing polybenzimidazoles (PFCB-PBI) for high temperature polymer electrolyte membrane fuel cells", Polymer, Vol. 50, No. 16, 2009, p. 3911.   DOI   ScienceOn
16 H. Bai and W. S. W. Ho, "New poly (ethylene oxide) soft segment-containing sulfonated polyimide copolymers for high temperature proton-exchange membrane fuel cells", J. Membr. Sci., Vol. 313, No. 1-2, 2008, p. 75.   DOI
17 D. H. Choi, J. Lee, O. Kwon, J. Y. Kim, and K. Kim, "Sulfonated poly(fluorinated arylene ether)s/poly (N-vinylimidazole) blend polymer and PTFE layered membrane for operating PEMFC at high temperature", J. Power Sources, Vol. 178, No. 2, 2008, p. 677.   DOI   ScienceOn
18 S. E. Nam, S. O. Kim, Y. Kang, J. W. Lee, and K. H. Lee, "Preparation of nafion/sulfonated poly (phenylsilsesquioxane) nanocomposite as high temperature proton exchange membranes", J. Membr. Sci., Vol. 322, No. 2, 2008, p. 466.   DOI   ScienceOn
19 Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, "Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB-PBI) for high temperature polymer electrolyte membrane fuel cells", Prog. Polym. Sci., Vol. 34, No. 16, 2009, p. 449.   DOI
20 C.S. Spiegel, In: Designing & Building Fuel Cells, Mc Graw-Hill, New York, 2007, p.35-52.
21 J. Larminie and A. Dicks, Fuel cell systems explained (2nd edition), John Wiley & Sons, 2003, p. 67-119.
22 A. K. Mishra, S. Bose, T. Kuila, N. H. Kim, and J. H. Lee, "Silicate-based polymer-nano composite membranes for polymer electrolyte membrane fuel cells", Prog. Polym. Sci. doi: 10.1016/j.prog polymsci.2011.11.002.
23 S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K. Lau, and J. H. Lee, "Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges", Prog. Polym. Sci., Vol. 36, No. 6, 2011, p. 813.   DOI   ScienceOn
24 S. M. J. Zaidi, "Research trends in polymer electrolyte membranes for PEMFC". in S. M. J. Zaidi, T. Matsuura (eds.), "Polymer membrane for fuel cells", Springer Science Business Media, Germany, 2009, p. 7.