• 제목/요약/키워드: Target DNA

검색결과 786건 처리시간 0.03초

Temperature-dependent tendency of target DNA translocation through a nanocapillary functionalized with probe DNA

  • Lee, Choongman;Youn, Yeoan;Kim, Joo Hyung;Yoo, Kyung-Hwa
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.140.1-140.1
    • /
    • 2016
  • We have measured DNA translocation through a nanocapillary functionalized with probe DNA. These DNA-functionalized nanocapillaries selectively facilitate the translocation of target ssDNAs that are complementary to the probe ssDNAs. In addition, translocation of the complementary target ssDNA exhibits two tendencies to translocation speed, such as fast and slow translocation, whereas that of non-complementary target ssDNA yields only one tendency, fast translocation. These observations suggest that the complementary and non-complementary target ssDNAs may be discriminated due to different interaction strengths between target and probe ssDNAs. The temperature dependence measurements of DNA translocation show that slow translocation events are ascribed to the complementary interaction between probe and target ssDNA. This confirms that their dwell time is dependent on the base-pair binding strength. These results demonstrate that mere single-base different target DNA can be selectively detectable by using the probe DNA-functionalized nanocapillaries.

  • PDF

Hybridization by an Electrical Force and Electrochemical Genome Detection Using an Indicator-free DNA on a Microelectrode-array DNA Chip

  • Choi, Yong-Sung;Lee, Kyung-Sup;Park, Dae-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권3호
    • /
    • pp.379-383
    • /
    • 2005
  • This research aims to develop DNA chip array without an indicator. We fabricated microelectrode array by photolithography technology. Several DNA probes were immobilized on an electrode. Then, indicator-free target DNA was hybridized by an electrical force and measured electrochemically. Cyclic-voltammograms (CVs) showed a difference between DNA probe and mismatched DNA in an anodic peak. Immobilization of probe DNA and hybridization of target DNA could be confirmed by fluorescent. This indicator-free DNA chip microarray resulted in the sequence-specific detection of the target DNA quantitatively ranging from $10^{-18}\;M\;to\;10^{-5}$ M in the buffer solution. This indicator-free DNA chip resulted in a sequence-specific detection of the target DNA.

Indicator-free DNA Chip Array Using an Electrochemical System

  • Park, Yong-Sung;Kwon, Young-Soo;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권4호
    • /
    • pp.133-136
    • /
    • 2004
  • This research aims to develop a DNA chip array without an indicator. We fabricated a microelectrode array through photolithography technology. Several DNA probes were immobilized on an electrode. Then, target DNA was hybridized and measured electrochemically. Cyclic-voltammograms (CVs) showed a difference between the DNA probe and mismatched DNA in an anodic peak. This indicator-free DNA chip resulted in a sequence-specific detection of the target DNA.

Evaluation of Amplified-based Target Preparation Strategies for Toxicogenomics Study : cDNA versus cRNA

  • Nam, Suk-Woo;Lee, Jung-Young
    • Molecular & Cellular Toxicology
    • /
    • 제1권2호
    • /
    • pp.92-98
    • /
    • 2005
  • DNA microarray analysis of gene expression in toxicogenomics typically requires relatively large amounts of total RNA. This limits the use of DNA microarray when the sample available is small. To confront this limitation, different methods of linear RNA amplification that generate antisense RNA (aRNA) have been optimized for microarray use. The target preparation strategy using amplified RNA in DNA microarray protocol can be divided into direct-incorporation labeling which resulted in cDNA targets (Cy-dye labeled cDNA from aRNA) and indirect-labeling which resulted in cRNA targets (i.e. Cy-dye labeled aRNA), respectively. However, despite the common use of amplified targets (cDNA or cRNA) from aRNAs, no systemic assessment for the use of amplified targets and bias in terms of hybridization performance has been reported. In this investigation, we have compared the hybridization performance of cRNA targets with cDNA targets from aRNA on a 10 K cDNA microarrays. Under optimized hybridization conditions, we found that 43% of outliers from cDNA technique and 86% from the outlier genes were reproducibly detected by both targets hybridization onto cDNA microarray. This suggests that the cRNA labeling method may have a reduced capacity for detecting the differential gene expression when compared to the cDNA target preparation. However, further validation of this discordant result should be pursued to determine which techniques possesses better accuracy in identifying truly differential genes.

비수식화 바이오칩 및 유전자 검출 (Genome Detection Using an DNA Chip Array and Non-labeling DNA)

  • 최용성;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.402-403
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

A Study on Gene Detection using Non-labeling DNA

  • Choi Yong-Sung;Lee Kyung-Sup;Kwon Young-Soo
    • 한국전기전자재료학회논문지
    • /
    • 제19권10호
    • /
    • pp.960-965
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

DNA 측정용 SAW 센서의 주파수 증대에 의한 감도향상 (Improvement in Sensitivity by Increasing the Frequency of SAW Sensors for DNA Detection)

  • 사공정열;김재호;이수석;노용래
    • 한국음향학회지
    • /
    • 제26권1호
    • /
    • pp.42-47
    • /
    • 2007
  • 본 논문에서는 probe DNA의 고정화 및 Probe DNA와 target DNA의 혼성화 반응을 감지할 수 있는 DNA 측정용 고주파 SAW 센서의 주파수 증대에 따른 감도향상에 대해 연구하였다. 센서는 $36^{\circ}$ YX $LiTaO_3$ 압전 단결정 기판위에 Au 박막이 증착된 측정채널 (sensing channel)과 기준채널 (reference channel)로 구성되며 200MHz에서 발진되는 이중 지연선 형태로 제작되었다. 또한 SAW 센서의 감지 미케니즘의 최적화를 위해 SAW 센서의 Au 지연선상의 Probe DNA의 최적 고정화 반응농도와 target DNA의 최적 혼성화 반응농도를 결정하였으며, 디지털 시린지 펌프시스템을 구성하여 실험자에 따른 오차를 최소화하였다. 측정채널의 Au 박막 지연선상에 probe DNA를 고정화시킨 후 target DNA를 주입하면, DNA의 혼성화 반응이 일어나며 Au 지연선상의 질량이 변하게 된다. 따라서 질량하중 효과에 대한 센서의 주파수 변화를 측정하였다. 개발된 센서는 최대 0.066ng/ml/Hz의 민감도를 가지며 질량하중 효과에 대한 안정적인 주파수 변화를 나타내었다.

Foldback Intercoil DNA and the Mechanism of DNA Transposition

  • Kim, Byung-Dong
    • Genomics & Informatics
    • /
    • 제12권3호
    • /
    • pp.80-86
    • /
    • 2014
  • Foldback intercoil (FBI) DNA is formed by the folding back at one point of a non-helical parallel track of double-stranded DNA at as sharp as $180^{\circ}$ and the intertwining of two double helixes within each other's major groove to form an intercoil with a diameter of 2.2 nm. FBI DNA has been suggested to mediate intra-molecular homologous recombination of a deletion and inversion. Inter-molecular homologous recombination, known as site-specific insertion, on the other hand, is mediated by the direct perpendicular approach of the FBI DNA tip, as the attP site, onto the target DNA, as the attB site. Transposition of DNA transposons involves the pairing of terminal inverted repeats and 5-7-bp tandem target duplication. FBI DNA configuration effectively explains simple as well as replicative transposition, along with the involvement of an enhancer element. The majority of diverse retrotransposable elements that employ a target site duplication mechanism is also suggested to follow the FBI DNA-mediated perpendicular insertion of the paired intercoil ends by non-homologous end-joining, together with gap filling. A genome-wide perspective of transposable elements in light of FBI DNA is discussed.

비수식화 DNA를 이용한 유전자 검출 및 새로운 DNA칩의 개발 (Development of New DNA Chip and Genome Detection Using an Indicator-free Target DNA)

  • Park, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo;Tomoji Kawai
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권8호
    • /
    • pp.365-370
    • /
    • 2003
  • This research aims to develop an indicator-free DNA chip using micro-fabrication technology. At first, we fabricated a DNA microarray by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then indicator-free target DNA was hybridized by an electrical force and measured electrochemically in potassium ferricyanide solution. Redox peak of cyclic-voltammogram showed a difference between target DNA and mismatched DNA in an anodic peak current. Therefore, it is able to detect various genes electrochemically after immobilization of various probe DNAs and hybridization of indicator-free DNA on the electrodes simultaneously It suggested that this DNA chip could recognize the sequence specific genes.

기동표적 추적을 위한 DNA 코딩 기반 지능형 칼만 필터 (DNA Coding-Based Intelligent Kalman Filter for Tracking a Maneuvering Target)

  • 이범직;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.118-121
    • /
    • 2002
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the state of the target, but in the presence of a maneuver, its performance may be seliously degraded. In this paper, to solve this problem and track a maneuvering target effectively, DNA coding-based intelligent Kalman filter (DNA coding-based IKF) is proposed. The proposed method can overcome the mathematical limits of conventional methods and can effectively track a maneuvering target with only one filter by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and the GA-based IKF in computer simulations.