DOI QR코드

DOI QR Code

A Study on Gene Detection using Non-labeling DNA

  • Choi Yong-Sung (Department of Electrical Engineering, Dongshin University) ;
  • Lee Kyung-Sup (Department of Electrical Engineering, Dongshin University) ;
  • Kwon Young-Soo (Department of Electrical Engineering, Donga University)
  • Published : 2006.10.01

Abstract

This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

Keywords

References

  1. Fodor, S. P. A., Read, J., L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D., 'Light-direct, spatially addressable parallel chemical synthesis', Science, Vol. 251, p. 767, 1991 https://doi.org/10.1126/science.1990438
  2. Fodor, S. P. A., Rava, R. P., Juang, X. C., Pease, A. C., Holmes, C. P., and Adams, C. L., 'Multiplexed biochemical assays with biological chips', Nature, Vol. 364, p. 555, 1993
  3. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O., 'Quantitative monitoring of gene expression patterns with a complementary DNA microarrav', Science, Vol. 270, p. 467, 1995 https://doi.org/10.1126/science.270.5244.1995
  4. Yoshio O., Masanori K., Kenichi N., Fuyuka O., Hiroyuki F., and Yasuhito E., 'Kinetic measurements of DNA hybridization on an oligonucleotide-immobilization 27- MHz quartz crystal microbalance', Anal. Chem., Vol. 70, p. 1288, 1998 https://doi.org/10.1021/ac970584w
  5. Woolley A. T. and Mathies R. A., 'Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips', Pro. Natl. Acad. Sci., USA, Vol. 91, p. 11348, 1994
  6. Murakami Y., Takeuchi T., Yokoyama K., Tamiya E., and Karube I., 'Integration of enzyme-immobilized column with electrochemical flow cell using micromachining techniques for a glucose detection system', Anal. Chem., Vol. 65, p. 2731, 1993 https://doi.org/10.1021/ac00068a005
  7. Pease A. C., Solas D., Sullivan E. J, Cronin, M. T., Holmes, C. P., and Fodor S. P. A., Pro. Natl. Acad. Sci. USA, Vol. 91, p. 5022, 1994
  8. Lavigne J. J., Savoy S., Clevenger M. B., Ritchie J. E., McDoniel B., Yoo S.-J. Anslyn E. V., McDevitt J. T., Shear J. B., and Neikirk D., 'Solution-based analysis of multiple analytes by a sensor array: toward the development of and a electronic tongue', J. Am. Chem. Soc., Vol. 120, p. 642, 1998
  9. Adam B. S., Tonya M. H., and Michael J. T., 'Electrochemical quantitation of DNA immobilization on gold', Anal. Chem., Vol. 70, p. 4670, 1998
  10. Sanjay T., Diana P. B., and Fred R. K., 'Multicolor molecular beacons for allele discrmination', Nature Biotechnology, Vol. 16, p. 49, 1998
  11. Marrazza G., Chianella I., and Mascini M., 'Disposable DNA electrochemical sensor for hybridization detection', Biosens. Bioelectron., Vol. 14, p. 43, 1999
  12. Park N. and Hahn J. H., 'Electrochemical sensing of DNA hybridization based on duplex-specific charge compensation', Anal. Chem., Vol. 76, p. 900, 2004 https://doi.org/10.1021/ac026368r
  13. Shana O. K, Elizabeth M. B., Jacqueline K B., Nicole M. J., and Michael G. H., 'Single-base mismatch detection based on charge transduction through DNA', Nucleic Acids Research, Vol. 27, No. 24, p, 4830, 1999 https://doi.org/10.1093/nar/27.24.4830
  14. Mirkin C. A, Letsinger R. L., Mucic R. C., and Storhoff J. J., 'A DNA-based method of rationally assembling nanoparticles into macroscopic materials', Nature, Vol. 382, p. 607, 1996 https://doi.org/10.1038/382607a0