• Title/Summary/Keyword: Takagi-Sugeno model

Search Result 242, Processing Time 0.024 seconds

Allocations and Robust ℋ Fuzzy Control for Waypoints Tracking of Large Displacement Unmanned Underwater Vehicles (대형급 무인잠수정의 임무의 중요성에 따른 목표 경로점 선정 및 제어를 위한 T-S 퍼지모델 기반 강인 ℋ 제어기 설계)

  • Kang, Hyoung Bin;Lee, Ho Jae;Kim, Sung Hoon;Park, Ho Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.402-408
    • /
    • 2017
  • This paper deals with a robust ${\mathfrak{H}}_{\infty}$ controller design problem for waypoints tracking of large displacement unmanned underwater vehicles (LDUUVs) in Takagi-Sugeno fuzzy form. The LDUUV model uses a rudder to control its horizontal motion. We determine the order of waypoints based on their priorities and consider only surge force. A fuzzy controller in state-feedback form is taken and its design condition of is represented in terms of linear matrix inequalities. A numerical simulation is included to show the effectiveness of the theoretical development.

Stabilization Analysis for Switching-Type Fuzzy-Model-Based Controller (스위칭 모드 퍼지 모델 기반 제어기를 위한 안정화 문제 해석)

  • 김주원;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.793-800
    • /
    • 2001
  • This paper deals with a new design methodology for a switching-type fuzzy-model-based controller in continuous and discrete-time system. Takagi-Sugeno (TS) fuzzy model is employed to design the switching-type fuzzy-model-based controller. A switching-type fuzzy-model-based controller is constructed based on the spirit of “divide and conquer”. The global system which has several rules in divided into several subsystems and then, a solution is found at each subsystem. The global solution is determined by a conjunction of the solutions of each subsystem. The design conditions are formulated in terns of linear matrix inequalities (LMIs), which guarantee the stabilization of a given TS fuzzy system. Simulation examples are included for ensuring the proposed control method.

  • PDF

Robust Stabilization of Uncertain Nonlinear Systems via Fuzzy Modeling and Numerical Optimization Programming

  • Lee Jongbae;Park Chang-Woo;Sung Ha-Gyeong;Lim Joonhong
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.225-235
    • /
    • 2005
  • This paper presents the robust stability analysis and design methodology of the fuzzy feedback linearization control systems. Uncertainty and disturbances with known bounds are assumed to be included in the Takagi-Sugeno (TS) fuzzy models representing the nonlinear plants. $L_2$ robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matrix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

Design of Controller for Affine Takagi-Sugeno Fuzzy System with Parametric Uncertainties via BMI

  • Lee, Sang-In;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.658-662
    • /
    • 2004
  • This paper develops a stability analysis and controller synthesis methodology for a continuous-time affine Takagi-Sugeno (T-S) fuzzy systems with parametric uncertainties. Affine T-S fuzzy system can be an advantage because it may be able to approximate nonlinear functions to high accuracy with fewer rules than the homogeneous T-S fuzzy systems with linear consequents only. The analysis is based on Lyapunov functions that are continuous and piecewise quadratic. The search for a piecewise quadratic Lyapunov function can be represented in terms of bilinear matrix inequalities (BMIs). A simulation example is given to illustrate the application of the proposed method.

  • PDF

A Line-integral Fuzzy Lyapunov Functional Approach to Sampled-data Tracking Control of Takagi-Sugeno Fuzzy Systems

  • Kim, Han Sol;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2521-2529
    • /
    • 2018
  • This paper deals with a sampled-data tracking control problem for the Takagi-Sugeno fuzzy system with external disturbances. We derive a stability condition guaranteeing both asymptotic stability and H-infinity tracking performance by employing a newly proposed time-dependent line-integral fuzzy Lyapunov-Krasovskii functional. A new integral inequality is also introduced, by which the proposed stability condition is formulated in terms of linear matrix inequalities. Finally, the effectiveness of the proposed method is demonstrated through a simulation example.

An LMI-based Stable Fuzzy Control System Design with Pole-Placement Constraints

  • Hong, Sung-Kyung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.87-93
    • /
    • 1999
  • This paper proposes a systematic designs methodology for the Takagi-Sugeno (TS) model based fuzzy control systems with guaranteed stability and pre-specified transient performance for the application to a nonlinear magnetic bearing system. More significantly, in the proposed methodology , the control design problems which considers both stability and desired transient performance are reduced to the standard LMI problems . Therefore, solving these LMI constraints directly (not trial and error) leads to a fuzzy state-feedback controller such that the resulting fuzzy control system meets above two objectives. Simulation and experimentation results show that the proposed LMI-based design methodology yields only the maximized stability boundary but also the desired transient responses.

  • PDF

Robust Output-Tracking Control of Uncertain Takagi-Sugeno Fuzzy Systems

  • 이호재;박진배;정근호;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.315-318
    • /
    • 2003
  • A systematic output-tracking control design technique for robust control of Takagi-Sugeno (T-S) fuzzy systems with norm-bounded uncertainties is developed. The uncertain T-S fuzzy system is first represented as a set of uncertain local linear systems. The tracking problem is then converted into the stabilization problem for a set of uncertain local linear systems thereby leading to a more feasible controller design procedure. A sufficient condition for robust asymptotic output tracking is derived in terms of a set of linear matrix inequalities (LMIs). A stability condition on the traversing time-instances is also established. The output tracking control simulation for a flexible-joint robot-arm model is demonstrated, to convincingly show the effectiveness of the proposed system modeling and controller design method.

  • PDF

Decentralized Load-Frequency Control of Large-Scale Nonlinear Power Systems: Fuzzy Overlapping Approach

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.436-442
    • /
    • 2012
  • This paper develops a design methodology of a decentralized fuzzy load-frequency controller for a large-scale nonlinear power system with valve position limits on governors. The concerned system is locally exactly modeled in Takagi-Sugeno's form. Sufficient design condition for uniform ultimate boundedness of the closed-loop system is derived based on the overlapping decomposition. Convergence of all incremental frequency deviations to zero is also investigated. A simulation result is provided to visualize the effectiveness of the proposed technique.

Controller Design for Fuzzy Systems via Piecewise Quadratic Value Functions

  • Park, Jooyoung;Kim, JongHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.300-305
    • /
    • 2004
  • This paper concerns controller design for the Takagi-Sugeno (TS) fuzzy systems. The design method proposed in this paper is derived in the framework of the optimal control theory utilizing the piecewise quadratic optimal value functions. The major part of the proposed design procedure consists of solving linear matrix inequalities (LMIs). Since LMIs can be solved efficiently within a given tolerance by the recently developed interior point methods, the design procedure of this paper is useful in practice. A design example is given to illustrate the applicability of the proposed method.

Fuzzy Controller Design for Water level Control of Power Plant Drum (화력발전소 드럼의 수위제어를 위한 퍼지 제어기의 설계)

  • 이상혁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2003
  • In this paper, we propose a fuzzy controller design method for the water level control of the power plant drum in the form of nominimum phase system The proposed method is based on T. Takagi and H. Sugeno's fuzzy model. And we illustrate the improved characteristics as the simulation results, comparing with the conventional the PID and LQ controller design methods.