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Abstract: This paper develops a stability analysis and controller synthesis methodology for a continuous-time affine Takagi-

Sugeno (T-S) fuzzy systems with parametric uncertainties. Affine T-S fuzzy system can be an advantage because it may be

able to approximate nonlinear functions to high accuracy with fewer rules than the homogeneous T-S fuzzy systems with linear

consequents only. The analysis is based on Lyapunov functions that are continuous and piecewise quadratic. The search for

a piecewise quadratic Lyapunov function can be represented in terms of bilinear matrix inequalities (BMIs). A simulation

example is given to illustrate the application of the proposed method.
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1. Introduction

Most plants in the industry have uncertainties and it make

hard to control the general nonlinear, uncertain plants. In

order to surmount this difficulties, fuzzy control is devel-

oped recently. It has been shown that fuzzy logic control

(FLC) is a successful control approach for a complex nonlin-

ear systems. There are a number of systematic analysis and

controller design methodology in the literature, where the

Takagi-Sugeno (T-S) fuzzy model is used [7–9, 12–14]. The

T-S fuzzy model have two part, i.e., one is antecedent part,

the other is consequent part. Original T-S fuzzy system has

not only linear but also affine terms in the consequent part

[7]. But affine terms in the consequent part are ignored in

almost all paper [1, 7–9, 12–14]. In this paper, we call the

T-S fuzzy system that do not have affine term Homogeneous

T-S fuzzy system. In homogeneous T-S fuzzy systems, it is

well known that the stability depends on the existence of

a common positive definite matrix satisfying a set of LMIs.

But it is difficult to find common positive definite matrix P

satisfy every condition of stability. And although there is no

common positive definite matrix P , the system can be sta-

ble [3]. In these reasons, stability checking method for T-S

fuzzy system is appeared using piecewise Lyapunov function

[2–4]. The T-S fuzzy systems considered in this paper are

allowed to have an affine term. This can be an advantage,

because affine T-S fuzzy systems may be able to approximate

nonlinear functions to high accuracy with fewer rules than

the homogeneous T-S fuzzy systems with linear consequents

only. And we use piecewise Lyapunov function for stability

analysis of affine T-S fuzzy system [15,16].

Besides stability, robustness is very important requirement

for a control system. There may exist errors in modeling of

system and uncertainties that we cannot measure. Cao et al.

investigated some control techniques for uncertain T-S fuzzy

models [16]. And Kiriakidis studied the issue of stability ro-

bustness against modeling errors [17]. Lee et al. proposed
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robust fuzzy-model-based controller design method for sys-

tems with parametric uncertainties which norm-bounded [1].

In this paper, based on approach in [1] we propose robust

fuzzy controller design methodology for the continuous-time

affine T-S fuzzy model with parametric uncertainties. And

parametric uncertainties are assumed norm-bounded [11].

This paper is organized as follows: In the Section 2, we re-

view the basic notation of affine T-S fuzzy systems and as-

sumption of uncertainty model. We propose a stability anal-

ysis and controller design methodology of affine T-S fuzzy

systems with parametric uncertainties in the Section 3.. Sec-

tion 4 shows a numerical examples and simulation results.

Finally conclusion and some discussions are given in Section

5..

2. Preliminaries

Consider the continuous-time affine T-S fuzzy system in

which the ith rule is formulated in the following form:

Plant Rules

R
i : IF x1(t) is Γi

1 and · · · and xn(t) is Γi
n ,

THEN ẋ(t) = (Ai + ∆Ai)x(t) + (Bi + ∆Bi)u(t)

+ (ai + ∆ai) (1)

where Γi
j(i = 1, . . . , q, j = 1, . . . , n.) is the fuzzy set, x(t) ∈

R
n is the state vector, u(t) ∈ R

m is the control input vector,

Ai ∈ R
n×n, Bi ∈ R

n×m, ai ∈ R
n×1 are system matrix, input

coupling matrix and affine matrix, respectively. And ∆Ai ∈

R
n×n, ∆Bi ∈ R

n×m, ∆ai ∈ R
n×1 are time-varying uncertain

matrices with appropriate dimension of system matrix, input

coupling matrix and affine matrix, respectively which express

the parametric uncertainties in the fuzzy model.

The defuzzified output of the affine T-S fuzzy system (1) is

represented as follows:

ẋ(t) =

q∑
i=1

µi(x(t))((Ai + ∆Ai)x(t) + (Bi + ∆Bi)u(t)

+ (ai + ∆ai)) (2)
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ωi(x(t)) =
n∏

j=1

Γi
j(xj(t)) , µi(x(t)) =

ωi(x(t))∑q

i=1 ωi(x(t))

where Γi
j(xj(t)) is the membership value of xj(t) in Γi

j and

ωi(x(t)) is the normalized membership function.

Throughout this paper, a state feedback affine T-S fuzzy-

model-based control law is utilized for the stabilization of

the T-S fuzzy system (2) in which the ith rule is formulated

in the following form:

Controller Rules

R
i : IF x1(t) is Γi

1 and · · · and xn(t) is Γi
n

THEN u(t) = Kix(t) (3)

where Ki ∈ R
m×n are control gain matrices to be selected.

The defuzzified output of the controller rules is given by

u(t) =

q∑
i=1

µi(x(t))Kix(t) . (4)

The closed-loop system with (2) and (4) is represented as

ẋ(t) =

q∑
i=1

q∑
j=1

µi(x(t))µj(x(t))

((Ai + ∆Ai + (Bi + ∆Bi)Kj)x(t) + ai + ∆ai) (5)

For convenient notation, we introduce followings:

x̄ =

[
x

1

]
, Āi =

[
Ai ai

0 0

]
, ∆Āi =

[
∆Ai ∆ai

0 0

]
,

B̄i =

[
Bi

0

]
, ∆B̄i =

[
∆Bi

0

]
, C̄i =

[
Ci 0

]
,

K̄i =
[
Ki 0

]
. (6)

Using this notation, the system (5) can be expressed as

˙̄x(t) =

q∑
i=1

q∑
j=1

µi(x̄(t))µj(x̄(t))Ḡij x̄(t) (7)

=

q∑
i=1

µ
2
i (x̄(t))Ḡii

+ 2

q∑
i<j

µi(x̄(t))µj(x̄(t))

(
Ḡij + Ḡji

2

)
x̄(t) (8)

where Ḡij = Āi + ∆Āi + (B̄i + ∆B̄i)K̄j .

Remark 1: In the extended notations, membership func-

tion Γi
j(x̄(t)) and normalized membership function ωi(x̄(t))

have same values of original membership function Γi
j(x(t))

and normalized membership function ωi(x(t)).

Define I0 ⊆ I as the set of indices for subspace that contain

the origin and I1 = I\I0 ⊆ I as the set of indices for subspace

that do not contain the origin. Since we are interested in

analyzing exponential stability of the origin, it is assumed

that ai = 0, ∆ai = 0 for all i ∈ I0.

For i ∈ I0 (8) becomes

ẋ(t) =

q∑
i=1

q∑
j=1

µi(x(t))µj(x(t))Gijx(t) (9)

where Gij = Ai + ∆Ai + (Bi + ∆Bi)Kj and it is the same

system in [1].

Since the closed loop systems (8) and (9) have time-varying

uncertain matrices, it is difficult to decide the stability of the

system. In this reason the parametric uncertainties consid-

ered here are removed under some reasonable assumptions.

In this paper, we assume that uncertain matrices ∆Ai, ∆Bi

and ∆ai are admissibly norm-bounded and structured.

Assumption 1: The parametric uncertainties considered

here are norm-bounded, in term[
∆Ai ∆ai ∆Bi

]
= DiFi(t)

[
E1i E2i E3i

]
(10)

[
∆Āi ∆B̄i

]
= D̄iF̄i(t)

[
Ē1i Ē3i

]
(11)

where Di, E1i, E2i, and E3i are known real constant matri-

ces of appropriate dimensions, and Fi(t) is unknown matrix

function satisfies Fi(t)
T Fi(t) ≤ I, in which I is the identity

matrix of appropriate dimension. And extended variables

have following notation.

D̄i =

[
Di 0

0 0

]
, F̄i =

[
Fi 0

0 0

]
, Ē1i =

[
E1i E2i

0 0

]
,

Ē3i =

[
E3i

0

]

3. Robust Stability of Affine T-S Fuzzy Systems

In some case, it is possible to prove stability of T-S fuzzy

system using globally quadratic function V (x) = xT Px in

the sense of Lyapunov. But it is difficult to find common

positive definite matrix P satisfy every condition of stabil-

ity. Although there is no common positive definite matrix P ,

the system can be stable [3]. In this reason, stability check-

ing method for T-S fuzzy system is appeared using piecewise

Lyapunov function [2–4].

Theorem 1: If there exists symmetric matrices T, Ui,

and Wi such that Ui and Wi have nonnegative entries such

that

Pi = F
T
i TFi, i ∈ I0 (12)

P̄i = F̄
T
i TFi, i ∈ I1 (13)

satisfy

0 < Pi − E
T
i UiEi (14)

0 > A
T
i Pi + PiAi + E

T
i WiEi (15)

for i ∈ I0, and

0 < P̄i − Ē
T
i UiĒi (16)

0 > Ā
T
i P̄i + P̄iĀi + Ē

T
i WiĒi (17)

for i ∈ I1, then x(t) tends to zero exponentially.

Before proceeding, we recall the following matrix inequalities

which will be needed in the proof of our main result below.
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Lemma 1: Given constant matrices D and E and a sym-

metric constant matrix S of appropriate dimensions, the fol-

lowing inequality holds:

S + DFE + E
T
F

T
D

T
< 0,

where F satisfies F T F ≤ R, if and only if for some ε > 0

S +
[
ε−1ET εD

] [
R 0

o I

] [
ε−1E

εDT

]
< 0.

Lemma 2: Let Fo(x(t)), · · · , Fq(x(t)) be quadratic func-

tions of the variable x(t) ∈ R
n. Consider the following state-

ments:

F0(x(t)) ≤ 0 for all x(t) such that

Fi(x(t)) ≤ 0, ∀i ∈ {1, · · · , q} (18)

If there exists scalars τ1 ≥ 0, · · · , τq such that

F0(x(t)) −

q∑
i=1

τiFi(x(t)) ≤ 0 (19)

then (18) holds.

By using Lemma 1, the theoretical difficulties in dealing with

uncertainty can be effectively eliminated.

The main result on the global asymptotic stability of affine

T-S fuzzy system with parametric uncertainties is shown be-

low.

Theorem 2: For each i ∈ I, If there exists a symmetric

matrix T and some matrices Ki, and some scalars εij , (i, j =

1, · · · , q) such that the following LMIs are satisfied, then the

continuous-time T-S fuzzy system is asymptotically stabiliz-

able via T-S fuzzy model-based state-feedback controller:

Pij = F
T
ij TFij , (i, j) ∈ I0

P̄ij = F̄
T
ij T F̄ij , (i, j) ∈ I1

satisfy

0 < Pij (20)

0 < P̄ij (21)

⎡⎢⎣ Φii ∗ ∗

E1i + E3iKi −εiiI ∗

DT
i Pii 0 −ε−1

ii I

⎤⎥⎦ < 0

(1 ≤ i ≤ q, i ∈ I0) (22)

⎡⎢⎣ Φ̄ii ∗ ∗

Ē1i + Ē3iK̄i −εiiI ∗

D̄T
i P̄ii 0 −ε−1

ii I

⎤⎥⎦ < 0

(1 ≤ i ≤ q, i ∈ I1) (23)

⎡⎢⎢⎢⎢⎢⎣
Θij ∗ ∗ ∗ ∗

E1i + E3iKj −εijI ∗ ∗ ∗

E1j + E3jKi 0 −εijI ∗ ∗

DT
i P 0 0 −ε−1

ij I ∗

DT
j P 0 0 0 −ε−1

ij I

⎤⎥⎥⎥⎥⎥⎦ < 0

(1 ≤ i < j ≤ q, i ∈ I0)

(24)

⎡⎢⎢⎢⎢⎢⎣
Θ̄ij ∗ ∗ ∗ ∗

Ē1i + Ē3iK̄j −εijI ∗ ∗ ∗

Ē1j + Ē3jK̄i 0 −εijI ∗ ∗

D̄T
i P̄ 0 0 −ε−1

ij I ∗

D̄T
j P̄ 0 0 0 −ε−1

ij I

⎤⎥⎥⎥⎥⎥⎦ < 0

(1 ≤ i < j ≤ q, i ∈ I1)

(25)

where

Φii = A
T
i Pii + PiiAi + K

T
i B

T
i Pii + PiiBiKi,

Φ̄ii = Ā
T
i P̄ii + P̄iiĀi + K̄

T
i B̄

T
i P̄ii + P̄iiB̄iK̄i,

Θij = A
T
i P + PAi + A

T
j P + PAj

+ K
T
j B

T
i P + PBiKj + K

T
i B

T
j P + PBjKi ,

Θ̄ij = Ā
T
i P̄ + P̄ Āi + Ā

T
j P̄ + P̄ Āj

+ K̄
T
j B̄

T
i P̄ + P̄ B̄iK̄j + K̄

T
i B̄

T
j P̄ + P̄ B̄jK̄i.

Proof: It is omitted in this paper.

To reduce conservatism of Theorem 2, we introduce S-

procedure [2–4,19]. And we can get the next corollary.

Corollary 1: In solving the inequalities in Theorem 2, if

we replace (20) and (21) to (26) and (27) respectively, and

Pij , P̄ij in (22)∼(25) to (28) and (29) respectively, then the

continuous-time affine T-S fuzzy system is asymptotically

stable in the relaxed condition.

0 < Pij − E
T
ijUijEij (26)

0 < P̄ij − Ē
T
ijŪijĒij (27)

0 < Pij + E
T
ijWijEij (28)

0 < P̄ij + Ē
T
ijW̄ijĒij (29)

Remark 2: It is noted that the matrix inequalities in Theo-

rem 2 and Corollary 1 are the BMIs. They can be solved by

V-K iteration method [?]. The procedure can be summaried
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in the followng algorithm.

Algorithm 1: (V-K iteration method)

1. Initialize contoller gain matrix Ki(i ∈ I0), K̄i(i ∈ I1) by

using pole placement technique.

2. V-step: Given a fixed controller gain ki, i ∈ I0, k̄i, i ∈ I1,

solve the following optimization problem.

min
Pij ,P̄ij ,Uij ,Wij

λij

s.t. the left side of inequalities in (22), (23), (24), (25)

is less than λijI.

3. K-step: Using the matrices Pij , P̄ij obtained in step 2,

solve the following optimization problem.

min
Kij ,K̄ij ,Uij ,Wij

λij

s.t. the left side of inequalities in (22), (23), (24), (25)

is less than λijI.

4. If λij < 0, (i, j) ∈ I, go to step 5, else iterate step 2 and

step 3 until finding λij < 0, (i, j) ∈ I.

5. Using acquired controller gain, make closed-loop system

stable.

4. Simulations

In this section, to show the efficiency of the proposed robust

controller design techniques, we simulate the numerical ex-

ample with parametric uncertainties. the contorl objective

is to drive their trajectories to the origin.

Consider the following T-S fuzzy system.

R
1 : IF x1(t) ≤ −2

THEN ẋ(t) = (A1 + ∆A1)x(t) + (B1 + ∆B1)u(t)

+ (a1 + ∆a1) (30)

R
2 : IF − 2 < x1(t) ≤ 0

THEN ẋ(t) = (A2 + ∆A2)x(t) + (B2 + ∆B2)u(t)

+ (a2 + ∆a2) (31)

R
3 : IF 0 < x1(t) ≤ 2

THEN ẋ(t) = (A3 + ∆A3)x(t) + (B3 + ∆B3)u(t)

+ (a3 + ∆a3) (32)

R
4 : IF 2 < x1(t)

THEN ẋ(t) = (A4 + ∆A4)x(t) + (B4 + ∆B4)u(t)

+ (a4 + ∆a4) (33)

where

A1 =

[
−10 11

10 9

]
, A2 = A3 =

[
−1 5

2 8

]
, A4 =

[
−10 10

10 5

]
,

Bi =

[
0

1

]
, a1 =

[
0

−2

]
, a2 = a3 =

[
0

0

]
, a1 =

[
0

2

]
,

In this example we will consider the parametric uncertain-

ties of system matrices only. So it is assumed that ∆ai =[
0

0

]
, ∆Bi =

[
0

0

]
, i = {1, 2, 3, 4}. And assume parametric
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Fig. 1. State Trajectory of the system with 4 initial condi-

tions

uncertainties are bounded within 30% of the their nominal

values.

One can verify that the system is asymptotically sta-

ble in the large by using Theorem 2. By using gain

matrices, we simulate with 4 initial condition x(0) =[
2 0

]T

,
[
4 0

]T

,
[
6 0

]T

,
[
8 0

]T

and result are shown

in Figure 1.

5. Closing Remarks

In this paper, we have developed and analyzed a new robust

fuzzy controller design method for affine T-S fuzzy systems

with parametric uncertainties based on a piecewise Lyapunov

function. And the search for a piecewise Lyapunov function

can be represented in terms of bilinear matrix inequalities

(BMIs). One numerical example is presented to simulate

the design procedure.
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