• Title/Summary/Keyword: TaN(Tantalum Nitride)

Search Result 32, Processing Time 0.024 seconds

Synthesis of Tantalum Oxy-nitride and Nitride using Oxygen Dificiency Tantalum Oxides (산소결핍 탄탈륨 산화물을 활용한 탄탈륨 산질화물 및 질화물 합성)

  • Park, Jong-Chul;Pee, Jae-Hwan;Kim, Yoo-Jin;Choi, Eui-Seock
    • Journal of Powder Materials
    • /
    • v.15 no.6
    • /
    • pp.489-495
    • /
    • 2008
  • Colored tantalum oxy-nitride (TaON) and tantalum nitride ($Ta_{3}N_{5}$) were synthesized by ammonolysis. Oxygen deficient tantalum oxides ($TaO_{1.7}$) were produced by a titration process, using a tantalum chloride ($TaCl_5$) precursor. The stirring speed and the amount of $NH_{4}OH$ were important factors for controling the crystallinity of tantalum oxides. The high crystallinity of tantalum oxides improved the degree of nitridation which was related to the color value. Synthesized powders were characterized by XRD, SEM, TEM and Colorimeter.

Microstructural evolution of tantalum nitride thin films synthesized by inductively coupled plasma sputtering

  • Sung-Il Baik;Young-Woon Kim
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.7.1-7.10
    • /
    • 2020
  • Tantalum nitride (TaNx) thin films were grown utilizing an inductively coupled plasma (ICP) assisted direct current (DC) sputtering, and 20-100% improved microhardness values were obtained. The detailed microstructural changes of the TaNx films were characterized utilizing transmission electron microscopy (TEM), as a function of nitrogen gas fraction and ICP power. As nitrogen gas fraction increases from 0.05 to 0.15, the TaNx phase evolves from body-centered-cubic (b.c.c.) TaN0.1, to face-centered-cubic (f.c.c.) δ-TaN, to hexagonal-close-packing (h.c.p.) ε-TaN phase. By increasing ICP power from 100 W to 400 W, the f.c.c. δ- TaN phase becomes the main phase in all nitrogen fractions investigated. The higher ICP power enhances the mobility of Ta and N ions, which stabilizes the δ-TaN phase like a high-temperature regime and removes the micro-voids between the columnar grains in the TaNx film. The dense δ-TaN structure with reduced columnar grains and micro-voids increases the strength of the TaNx film.

Effect of By-product (NH4Cl) on the Improvement of the Red Color Tone of Tantalum Nitride (Ta3N5) (탄탈륨 질화물(Ta3N5)의 적색도 향상에 미치는 NH4Cl의 영향)

  • Park, Eun-Young;Pee, Jae-Hwan;Kim, Yoo-Jin;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.583-586
    • /
    • 2009
  • The Tantalum nitride has attracted wide at attention as issues related to the toxicity of Cd-related materials. But in the titration process of Ta$Cl_5$ solution with $NH_4$OH, $NH_4$Cl, as a by product, was remained in the prepared Tantalum precursor. The tantalum precursor with $NH_4$Cl was nitrided by ammonolysis. The red color tone of $Ta_3N_5$ was reduced by the residual $NH_4$Cl reduce. Therefore, amorphous Tantalum precursor was prepared by filtering process with as hydrous ethanol to remove the $NH_4$Cl. In the case of using Tantalum precursor without $NH_4$Cl, we successfully synthesized the Tantalum nitride with good red color. The value of red color tone was improved from $a^*$=36.8 to $a^*$=53.0. The synthesized powder was characterized by XRD, SEM, the Nitrogen / Oxygen Determinator, TG-DTA, and the CIE $L^*a^*b^*$ colorimeter.

Effect of Alanine on Cu/TaN Selectivity in Cu-CMP (Cu-CMP에서 Alanine이 Cu와 TaN의 선택비에 미치는 영향)

  • Park Jin-Hyung;Kim Min-Seok;Paik Ungyu;Park Jea-Gun
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.426-430
    • /
    • 2005
  • Chemical mechanical polishing (CMP) is an essential process in the production of integrated circuits containing copper interconnects. The effect of alanine in reactive slurries representative of those that might be used in copper CMP was studied with the aim of improving selectivity between copper(Cu) film and tantalum-nitride(TaN) film. We investigated the pH effect of nano-colloidal silica slurry containing alanine through the chemical mechanical polishing test for the 8(inch) blanket wafers as deposited Cu and TaN film, respectively. The copper and tantalum-nitride removal rate decreased with the increase of pH and reaches the neutral at pH 7, then, with the further increase of pH to alkaline, the removal rate rise to increase soddenly. It was found that alkaline slurry has a higher removal rate than acidic and neutral slurries for copper film, but the removal rate of tantalum-nitride does not change much. These tests indicated that alanine may improve the CMP process by controlling the selectivity between Cu and TaN film.

Characteristics of TaN by Atomic Layer Deposition as a Copper Diffusion Barrier (ALD법을 이용해 증착된 TaN 박막의 Cu 확산방지 특성)

  • Na, Kyoung-Il;Hur, Won-Nyung;Boo, Sung-Eun;Lee, Jung-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.195-198
    • /
    • 2004
  • For a diffusion barrier against copper, tantalum nitride films have been deposited on $SiO_{2}$ by atomic layer deposition (ALD), using PEMAT(Pentakis(ethylmethylamino)tantalum) and $NH_{3}$ as precursors, Ar as purging gas. The deposition rate of TaN at substrate temperature $250^{\circ}C$ was about $0.67{\AA}$ per one cycle. The stability of TaN films as a Cu diffsion barrier was tested by thermal annealing for 30 minutes in $N_{2}$ ambient and characterized through XRD, sheet resistance, and C-V measurement(Cu($1000{\AA}$)/TaN($50{\AA}$)/$SiO_{2}$($2000{\AA}$)/Si capacitor fabricated), which prove the TaN film maintains the barrier properties Cu below $400^{\circ}C$.

X-ray Scattering Study of Reactive Sputtered Ta-N/Ta/Si(001)Film as a Barrier Metal for Cu Interconnection (구리배선용 베리어메탈로 쓰이는 Ta-N/Ta/Si(001)박막에 관한 X-선 산란연구)

  • Kim, Sang-Soo;Kang, Hyon-Chol;Noh, Do-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.79-83
    • /
    • 2001
  • In order to compare the barrier properties of Ta-N/Si(001) with those of Ta-N/Ta/Si(001), we studied structural properties of films grown by RF magnetron sputtering with various $Ar/N_2$ ratios. To evaluate the barrier properties, the samples were annealed in a vacuum chamber. Ex-situ x-ray scattering measurements were done using an in-house x-ray system. With increasing nitrogen ratio in Ta-N/Si(001), the barrier property of Ta-N/Si(001) was enhanced, finally failed at $750^{\circ}C$ due to the crystallization and silicide formation. Compared with Ta-N/Si(001), Ta-N/Ta/Si(001) forms silicides at $650^{\circ}C$. However it does not crystallize even at $750^{\circ}C$. With increasing nitrogen composition in Ta-N/Ta/Si(001), the formation of tantalum silicide was reduced and the surface roughness was improved. To observe the surface morphology of Ta-N/Ta/Si(001) during annealing, we performed an in-situ x-ray scattering experiment using synchrotron radiation of the 5C2 at Pohang Light Source(PLS). Addition of Ta layer between Ta-N and Si(001) improved the surface morphology and reduced the surface degradation at high temperatures. In addition, increasing $N_2/Ar$ flow ratio reduced the formation of tantalum silicide and enhanced the barrier properties.

  • PDF

Electrical characteristic of RF sputtered TaN thin films with annealing temperature (스퍼터링법으로 제조된 TaN 박막의 열처리 온도에 따른 전기적 물성에 관한 연구)

  • 김인성;송재성;김도한;조영란;허정섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1014-1017
    • /
    • 2001
  • In recent years, The tantalum nitride(TaN) thin-film has been developed for the electronic resistor and capacitor. In this papers, The effect of thermal annealing in the temperature range of 300∼700$^{\circ}C$ on the sheet resistor properties and microistructure of tantalum nitride(TaN) thin-film deposited by RF sputtering was studied. XRD(X-ray diffractometer) and AFM were used to observe electrical properties and microstructrue of the TaN film and sheet resistance. The TCR properties of the TaN films were discussed in terms of annealing temperature, ratio of nitrogen, crystallization and thin films surface morphology due to annealing temperature. The leakage current of the TaN thin film annealed 400 $^{\circ}C$ was stabilized in the study. How its was found that the sheet resistance in the polycrystalline TaN thin film decreased with increasing the annealing temperature above 600 $^{\circ}C$ after sudden peak upen 400 $^{\circ}C$.

  • PDF

A study on integrated device TaN/$Al_2O_3$ thin film resistor development (TaN/$Al_2O_3$ 집적화 박막 저항소자 개발에 관한 연구)

  • Kim, I.S.;Cho, Y.R.;Min, B.K.;Song, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1476-1478
    • /
    • 2002
  • In recent years, the tantalum nitride(TaN) thin-film has been developed for the electronic resistor, inductor and capacitor. In this papers, this study presents the surface profile and sheet-resistance property relationship of reactive-sputtered TaN thin film resistor processed by TaN(tantalum nitride) on alumina substrate. The TCR properties of the TaN films were discussed in terms of crystallization and thin films surface morphology due to annealing temperature. It is clear that the TaN thin-films resistor electrical properties are low TCR related with it's annealing temperature and ambient annealing condition. Respectively, at $300{\sim}400^{\circ}C$ on vacuum and nitrogen annealed thin film resistor having a goof thermal stability and lower TCR properties then as deposited thin films expected for the application to the dielectric material of passive component.

  • PDF

Effects of Doping Elements and the Amounts of Oxygen/Nitrogen Contents in Final Nitrides on the Characteristics of Red Pigment of Tantalum Nitrides (Ta3N5) (적색 안료인 탄탈륨 질화물(Ta3N5)의 특성에 도핑 물질 및 최종질화물의 산소/질소 함량이 미치는 영향)

  • Park, Eun-Young;Pee, Jae-Hwan;Kim, Yoo-Jin;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.396-402
    • /
    • 2009
  • Tantalum nitrides ($Ta_3N_5$) have been developed to substitute the Cd based pigments for non-toxic red pigment. Various doping elements were doped to reduce the amount of high price Tantalum element used and preserve the red color tonality. Doping elements were added in the synthesizing process of precursor of amorphous tantalum oxides and then Tantalum nitrides doped with various elements were obtained by ammonolysis process. The average particle size of final nitrides with secondary phases was larger than the nitride without the secondary phases. Also secondary phases reduced the red color tonality of final products. On the other hand, final nitrides without secondary phase had orthorhombic crystal system and presented good red color. In other words, in the case of nitrides without secondary phases, doping elements made a solid solution of tantalum nitride. In this context, doping process controlled the ionic state of nitrides and the amount of oxygen/nitrogen in final nitrides affected the color tonality.

Chemical vapor deposition of $TaC_xN_y$ films using tert-butylimido tris-diethylamido tantalum(TBTDET) : Reaction mechanism and film characteristics

  • Kim, Suk-Hoon;Rhee, Shi-Woo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.24.1-24.1
    • /
    • 2009
  • Tantalum carbo-nitride($T_aC_xN_y$) films were deposited with chemical vapor deposition(CVD) using tert-butylimido tris-diethylamido tantalum (TBTDET, $^tBu-N=Ta-(NEt_2)_3$, $Et=C_2H_5$, $^tBu=C(CH_3)_3$) between $350^{\circ}C$ and $600^{\circ}C$ with argon as a carrier gas. Fourier transform infrared (FT-IR)spectroscopy was used to study the thermal decomposition behavior of TBTDET in the gas phase. When the temperature was increased, C-H and C-N bonding of TBTDET disappeared and the peaks of ethylene appeared above $450^{\circ}C$ in the gas phase. The growth rate and film density of $T_aC_xN_y$ film were in the range of 0.1nm/min to 1.30nm/min and of $8.92g/cm^3$ to $10.6g/cm^3$ depending on the deposition temperature. $T_aC_xN_y$ films deposited below $400^{\circ}C$ were amorphous and became polycrystal line above $500^{\circ}C$. It was confirmed that the $T_aC_xN_y$ film was a mixture of TaC, graphite, $Ta_3N_5$, TaN, and $Ta_2O_5$ phases and the oxide phase was formed from the post deposition oxygen uptake. With the increase of the deposition temperature, the TaN phase was increased over TaC and $Ta_3N_5$ and crystallinity, work function, conductivity and density of the film were increased. Also the oxygen uptake was decreased due to the increase of the film density. With the increase of the TaC phase in $T_aC_xN_y$ film, the work function was decreased to 4.25eV and with the increase of the TaN phase in $T_aC_xN_y$ film,it was increased to 4.48eV.

  • PDF