DOI QR코드

DOI QR Code

Effects of Doping Elements and the Amounts of Oxygen/Nitrogen Contents in Final Nitrides on the Characteristics of Red Pigment of Tantalum Nitrides (Ta3N5)

적색 안료인 탄탈륨 질화물(Ta3N5)의 특성에 도핑 물질 및 최종질화물의 산소/질소 함량이 미치는 영향

  • Park, Eun-Young (Whiteware Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Pee, Jae-Hwan (Whiteware Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Yoo-Jin (Whiteware Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Woo-Seok (Whiteware Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Kyeong-Ja (Whiteware Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 박은영 (한국세라믹기술원 도자세라믹센터) ;
  • 피재환 (한국세라믹기술원 도자세라믹센터) ;
  • 김유진 (한국세라믹기술원 도자세라믹센터) ;
  • 조우석 (한국세라믹기술원 도자세라믹센터) ;
  • 김경자 (한국세라믹기술원 도자세라믹센터)
  • Published : 2009.12.28

Abstract

Tantalum nitrides ($Ta_3N_5$) have been developed to substitute the Cd based pigments for non-toxic red pigment. Various doping elements were doped to reduce the amount of high price Tantalum element used and preserve the red color tonality. Doping elements were added in the synthesizing process of precursor of amorphous tantalum oxides and then Tantalum nitrides doped with various elements were obtained by ammonolysis process. The average particle size of final nitrides with secondary phases was larger than the nitride without the secondary phases. Also secondary phases reduced the red color tonality of final products. On the other hand, final nitrides without secondary phase had orthorhombic crystal system and presented good red color. In other words, in the case of nitrides without secondary phases, doping elements made a solid solution of tantalum nitride. In this context, doping process controlled the ionic state of nitrides and the amount of oxygen/nitrogen in final nitrides affected the color tonality.

Keywords

References

  1. W. U. Muller, C. Steffer and A. L. Joos: Toxicology., 4 (1990) 57 https://doi.org/10.1016/0887-2333(90)90010-Q
  2. H. Katsuki and S. Komarneni: J. Am. Ceram. Soc., 84 (2001) 2313 https://doi.org/10.1111/j.1151-2916.2001.tb01007.x
  3. M. Jansen, and H.P. Letschert: Nat. lett., 404 (2000) 980 https://doi.org/10.1038/35010082
  4. S. Bertaux, P. Reynders, J. M. Heintz and M. Lerch: Materials Science and Engineering., 121 (2005) 137 https://doi.org/10.1016/j.mseb.2005.03.029
  5. D. Lu, G. Hitoki, E. Katou, J. N, Kondo, M. Hara and K. Domen: J. Chem. Mater., 9 (2004) 1603 https://doi.org/10.1021/cm0347887
  6. Stuart J. Henderson and Andrew L. Hector: J. Solid State Chemistry., 179 (2006) 3518 https://doi.org/10.1016/j.jssc.2006.07.021
  7. J. Grins and G. Svensson: Journal of Materials Research Bulletin., 24 (2004) 801
  8. E. Guenther and M. Jansen: Journal of Materials Research Bulletin., 36 (2001) 1399 https://doi.org/10.1016/S0025-5408(01)00632-8
  9. C. M. Fang, E. Orhan, G. A. de Wijs, H. T. Hintzen, R. A. de Groot, R. Narchand, J.-Y. Saillard and G. de: J. Mater. Chem., 11 (2001) 1248 https://doi.org/10.1039/b005751g
  10. N. Terao: Jpn. J. Appl. Phys., 2 (1971) 248 https://doi.org/10.1143/JJAP.10.248