• Title/Summary/Keyword: TS fuzzy system

Search Result 89, Processing Time 0.023 seconds

Anticontrol of Chaos for a Continuous-Time TS Fuzzy System (연속시간 TS 퍼지 시스템의 카오스화)

  • Kim, Taek-Ryong;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.115-118
    • /
    • 2004
  • In this paper, a systematic design approach based on parallel distributed compensation techniques is proposed for anticontrol of chaos in a general continuous-time Takagi-Sugeno (TS) fuzzy system. The verification of chaos in the controlled continuous-time TS fuzzy system is done by the following procedure. First, we establish an asymptotically approximate relationship between a continuous-time TS fuzzy system with time-delay and a discrete-time TS fuzzy system. Then Marotto theorem is applied. The boundedness in the controlled continuous-time TS fuzzy system is also proven via its associated discrete-time TS fuzzy system.

  • PDF

Chaotifying a Continuous-Time TS Fuzzy System with Time-Delay (시간 지연을 이용한 연속시간 TS 퍼지 시스템의 카오스화)

  • Kim, Taek-Ryong;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2215-2217
    • /
    • 2004
  • In this paper, a systematic design approach based on the parallel distributed compensation technique is proposed for chaotifying a general continuous-time Takagi-Sugeno (TS) fuzzy system. The fuzzy parallel distributed compensation controller (FPDCC) is composed of the feedback gain and time-delay feedback. The verification of chaos in the controlled continuous-time TS fuzzy system is done by the following procedures. First, we establish an asymptotically approximate relationship between a time-delay continuous-time TS fuzzy system and a discrete-time TS fuzzy system. Then, Marotto theorem is applied. Therefore, the generated chaos is in the sense of Li and Yorke. The boundedness in the controlled continuous-time TS fuzzy system is also proven via its associated discrete-time TS fuzzy system.

  • PDF

Stochastic Stabilization of TS Fuzzy System with Markovian Input Delay (마코프 입력 지연을 갖는 TS 퍼지 시스템의 확률전 안정화)

  • 이호재;주영훈;이상윤;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.459-464
    • /
    • 2001
  • This paper discusses a stochastic stabilization of Takagi-Sugeno(TS) fuzzy system with Markovian input delay. The finite Markovian process is adopted to model the input delary of the overall control system. It is assumed that the zero and hold devices are used for control input. The continuous-time TS fuzzy system with the Markovian input delay is discretized for easy handling delay, according, the discretized TS fuzzy system is represented by a discrete-time TS fuzzy system with jumping parameters. The stochastic stabilizibility of the jump TS fuzzy system is derived and formulated in terms of linear matrix inequalities (LNIS)

  • PDF

Generating Chaos from Discrete TS Fuzzy System

  • Zhong Li;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.111-115
    • /
    • 2001
  • In this paper, a simple and systematic control design method is proposed for a discrete-time Takagi-Sugeno(TS) fuzzy system, which employs the parallel distributed compensation(PDC) to determine the structure of a fuzzy controller so as to mark all the Lyaunov exponents of the controlled TS fuzzy system strictly positive. This approach is proven to be mathematically rigorous for anticontrol of chaos for a TS fuzzy system in the sense that any given discrete-time TS fuzzy system can be made chaotic by the designed PDC controller along with the-operation. A numerical example is included to visualize the anticontrol effect.

  • PDF

Output Tracking Controller Design of Discrete-Time TS Fuzzy Systems (이산시간 TS 퍼지 시스템의 추종 제어기 설계)

  • 이호재;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.191-194
    • /
    • 2000
  • In this paper, an output tracking control technique of discrete-time Takagi-Sugeno (TS) fuzzy systems is developed. The TS fuzzy system is represented as an uncertain multiple linear system. The tracking problem of TS fuzzy system is converted into the stabilization problem of a uncertain multiple linear system. A sufficient condition for asymptotic tracking is obtained in terms of linear matrix inequalities (LMI). A design example is illustrated to show the effectiveness of the proposed method.

  • PDF

Robust Tracking Control of TS Fuzzy Systems with Parametric Uncertainties (파라미터 불확실성을 포함한 TS퍼지 시스템의 강인 추종 제어)

  • 이호재;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.260-263
    • /
    • 2000
  • In this paper, a tracking control technique of Takagi-Sugeno(TS) fuzzy systems with parametric uncertainties is developed. The uncertain TS fuzzy system is represented as an uncertain multiple linear system. The tracking problem of TS fuzzy system is converted into the regulation problem of a multiple linear system. A sufficient condition for robust tracking is obtained in terms of linear matrix inequalities(LMI). A Design example is illustrated to show the effectiveness of the proposed method.

  • PDF

Design of Optimal Controller for TS Fuzzy Models and Its Application to Nonlinear Systems (TS 퍼지 모델을 이용한 최적 제어기 설계 및 비선형 시스템에서의 응용)

  • Chang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.2
    • /
    • pp.68-73
    • /
    • 2000
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex nonlinear systems. Firstly, the nonlinear system is represented by Takagi-Sugeno(TS) fuzzy model and the global controller is constructed by compensating each linear model in the rule of TS fuzzy model. The design of conventional TS fuzzy-model-based controller is composed of two processes. One is to determine the static state feedback gain of each local model and the other is to validate the stability of the designed fuzzy controller. In this paper, we propose an alternative methods for the design of TS fuzzy-model-based controller. The design scheme is based on the extension of conventional optimal control theory to the design of TS fuzzy-model-based controller. By using the proposed method, the design and stability analysis of the TS fuzzy model-based controller is reduced to the problem of finding the solution of a set of algebraic Riccati equations. And we use the recently developed interior point method to find the solution of AREs, where AREs are recast as the LMI formulation. A numerical simulation example is given to show the effectiveness and feasibiltiy of the proposed fuzzy controller design method.

  • PDF

Fuzzy Modeling of a PMSM Chaotic System

  • Zhong Li;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.153-156
    • /
    • 2000
  • In this paper, a mathematical model of a permanent-magnet synchronous motor (PMSM) is derived, and the steady-state characteristics of this system, when subject to constant input voltages and constant external torque, are formulated. It is shown that the PMSM model can exhibit a variety of chaotic phenomena, under some choices of system parameters and external inputs. Based on TS fuzzy modeling methodology, the TS fuzzy model of the PMSM chaotic system is presented, so the interaction between fuzzy system and chaos can be explored, and then fuzzy-model-based control methodologies can be used to control chaos in chaotic systems. Computer simulations show that the strange attractors in the derived TS fuzzy system and original chaotic system are topologically equivalent.

  • PDF

Adaptive Fuzzy Bilinear Synchronization Control Design for Uncertain $L\ddot{u}$ Chaos System (불확실한 $L\ddot{u}$ 카오스 시스템을 위한 적응 퍼지 Bilinear 동기화 제어 설계)

  • Baek, Jae-Ho;Lee, Hee-Jin;Park, Mig-Non
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.59-66
    • /
    • 2010
  • This paper is proposed an adaptive fuzzy bilinear synchronization design for uncertain $L\ddot{u}$ chaos system. It is assumed that the $L\ddot{u}$ chaos system has unknown parameters. First, The $L\ddot{u}$ chaos system can be reconstructed via TS fuzzy bilinear modeling. We design an adaptive fuzzy bilinear synchronization control scheme based on TS fuzzy bilinear $L\ddot{u}$ chaos system with uncertain parameters. Lyapunov theory is employed to guarantee the stability of error dynamic system between TS fuzzy bilinear $L\ddot{u}$ chaos system and the proposed slave system and to derive the adaptive laws for estimating unknown parameters. Simulation results is given to demonstrate the validity of our proposed synchronization scheme.

Design of Discrete-Time TS Fuzzy-Model-Based Controller (이산 시간 TS퍼지 모델 기반 제어기 설계)

  • Lee, Ho-Jae;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2630-2632
    • /
    • 2000
  • In this paper, a control technique of Takagi-Sugeno (TS) fuzzy systems with parametric uncertainties is developed. The uncertain TS fuzzy system is represented as an uncertain multiple linear system. The control problem of TS fuzzy system is converted into the stabilization problem of a uncertain multiple linear system. A sufficient condition for robust stabilization is obtained in terms of linear matrix inequalities (LMI). A Design example is illustrated to show the effectiveness of the proposed method.

  • PDF