• Title/Summary/Keyword: TS 퍼지 시스템

Search Result 70, Processing Time 0.024 seconds

Intelligent Digital Redesign:Unmeasurable Premise Variable Case (지능형 디지털 재설계: 전건부 변수가 측정 불가능한 경우)

  • Ho Jae, Lee;Jin Bae Park;Yeon Woo Lee;Young Hoon Joo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.502-505
    • /
    • 2004
  • An intelligent digital redesign technique (IDR) for the observer-based output feedback Takagi-Sugeno (T-S) fuzzy control system with unmeasurable premise variables is developed. The considered IDR condition is cubically parameterized as convex minimization problems of the norm distances between linear operators to be matched.

  • PDF

Fuzzy Model-Based Digital Controller Using Dual-Rate Sampling (듀얼레이트 샘플링을 이용한 퍼지 모델 기반 디지털 제어기)

  • 김도완;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.129-132
    • /
    • 2003
  • This paper proposes a novel and efficient intelligent digital redesign technique for a Takagi-Sugeno (TS) fuzzy system. The term of intelligent digital redesign involves converting an existing analog fuzzy-model-based controller into an equivalent digital counterpart in the sense of state matching. In this paper, we suggest the discretization method based on the dual-rate sampling approximation is first proposed, and then attempt to globally match the states of the overall closed-loop TS fuzzy system with the pre-designed analog fuzzy-model-based controller and those with the digitally redesigned fuzzy-model-based controller. To show the feasibility and the effectiveness of the proposed method, a computer simulation is provided.

  • PDF

Design of a Variable Structure Controller Using Nonlinear Fuzzy Sliding Surfaces (비선형 퍼지 슬라이딩면을 이용한 가변구조 제어기의 설계)

  • 이희진;손홍엽;김은태;조영환;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.449-452
    • /
    • 1997
  • In this paper, we suggest a variable structure controller using the time-varying nonlinear sliding surface instead of the fixed sliding surface, which has been the robustness against parameter variations and extraneous disturbance during the reaching phase. As appling TS fuzzy algorithm to the regulation of the nonlinear sliding surface, the reaching time of the system trajectory is faster than the fixed method . This proposed scheme has better performance than the conventional method in reaching time parameter variation and extraneous disturbance. To demonstrate its performance, the proposed control algorithm is applied to a rotational inverted pendulum.

  • PDF

Robust Fuzzy Load-Frequency Control of Nonlinear Power Systems Using Intelligent Digital Redesign Technique (지능형 디지털 재설계 기법을 이용한 비선형 전력 계통의 강인 퍼지 부하 주파수 제어)

  • 이남수;이연우;전상원;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.142-145
    • /
    • 2000
  • A new robust load-frequency control (LFC) methodology is proposed for nonlinear power systems with the valve position limits of the governor in the presence of parametric uncertainties. The Takagi-Sugeno (TS) fuzzy model is adopted for fuzzy modeling of the nonlinear power system. A sufficient condition of the robust stability is presented in the sense of Lyapunov for the TS fuzzy model with parametric uncertainties. The intelligent digital redesign technique for the uncertain nonlinear power system is also studied. The effectiveness of the proposed robust fuzzy LFC controller design method is demonstrated through a numerical simulation.

  • PDF

Radar Tracking Using a Fuzzy-Model-Based Kalman Filter (퍼지모델 기반 칼만 필터를 이용한 레이다 표적 추적)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.303-306
    • /
    • 2003
  • In radar tracking, since the sensor measures range, azimuth and elevation angle of a target, the measurement equation is nonlinear and the extended Kalman filter (EKF) is applied to nonlinear estimation. The conventional EKF has been widely used as a nonlinear filter for radar tracking, but the considerably large measurement error due to the linearization of nonlinear function in highly nonlinear situations may deteriorate the performance of the EKF To solve this problem, a fuzzy-model-based Kalman filter (FMBKF) is proposed for radar tracking. The FMBKF uses a local model approximation based on a TS fuzzy model instead of a Jacobian matrix to linearize nonlinear measurement equation. The hybrid GA and RLS method is used to identify the premise and the consequent parameters and the rule numbers of this TS fuzzy model. In two-dimensional radar tracking problem, the proposed method is compared with the conventional EKF.

  • PDF

A model reference adaptive fuzzy control for MIMO Takagi-Sugeno fuzzy model (MIMO Takagi-Sugeno 퍼지 모델을 위한 모델참조 적응 퍼지 제어기의 설계)

  • Cho, Young-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.130-135
    • /
    • 2007
  • In this paper, a direct model reference adaptive fuzzy control (MRAFC) scheme is developed for the plant model whose structure is represented by the MIMO Takagi-Sugeno fuzzy model. The MRAFC scheme is proposed to provide asymptotic tracking of a reference signal lot the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee that all signals in the closed-loop system are bounded. In addition, the plant state tracks the state of the reference model asymptotically with time tot any bounded reference input signal.

Fuzzy Model Based Generalized Predictive Control for Nonlinear System (비선형 시스템을 위한 퍼지모델 기반 일반예측제어)

  • Lee, Chul-Heui;Seo, Seon-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.697-699
    • /
    • 2000
  • In this paper, an extension of model predictive controller for nonlinear process using Takagi-Sugeno(TS) fuzzy model is proposed Since the consequent parts of TS fuzzy model comprise linear equations of input and output variables. it is locally linear, and the Generalized Predictive Control(GPC) technique which has been developed to control Linear Time Invariant(LTI) plants, can be extended as a parallel distributed controller. Also fuzzy soft constraints are introduced to handle both equality and inequality constraints in a unified form. So the traditional constrained GPC can be transferred to a standard fuzzy optimization problem. The proposed method conciliates the advantages of the fuzzy modeling with the advantages of the constrained predictive control, and the degree of freedom is increased in specifying the desired process behavior.

  • PDF

Design of Takagi-Sugeno Fuzzy Controllers for Nonlinear Systems using LMIs (선형행렬부등식을 이용한 비선형 시스템의 TS 퍼지 제어기 설계)

  • Kim, Jin-Sung;Choy, Ick;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2398-2400
    • /
    • 2000
  • In this paper, we consider multi-objective synthesis of fuzzy controllers for a widely used special class of the Takagi-Sugeno(TS) fuzzy systems. We propose a new fuzzy controller utilizing the strategy of rescaling and show that synthesis of the proposed controllers satisfying multiple design objectives can be reduced to a simple linear matrix inequality(LMI) problem. Finally, an application to an inverted pendulum on a cart is presented to illustrate the validity of the proposed method.

  • PDF

A fuzzy-model-based controller for a helicopter system with 2 degree-of-freedom in motion (2 자유도 헬리콥터 시스템의 제어를 위한 퍼지 모델 기반 제어기)

  • Chang, Wook;Lee, Ho-Jae;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1949-1951
    • /
    • 2001
  • This paper deals with the control of a nonlinear experimental helicopter system by using the fuzzy-model-based control approach. The fuzzy model of the experimental helicopter system is constructed from the original nonlinear dynamic equations in the form of an affine Takagi-Sugeno (TS) fuzzy system. In order to design a feasible switching-type fuzzy-model-based controller, the TS fuzzy system is converted to a set of uncertain linear systems, which is used as a basic framework to synthesize the fuzzy-model-based controller.

  • PDF

Intelligent Digital Redesign of a Fuzzy-Model-Based Controllers for Nonlinear Systems with Uncertainties (불확실성을 갖는 비선형 시스템을 위한 퍼지 모델 기반 제어기의 지능형 디지털 재설계)

  • Jang Kwon-Kyu;Kwon Oh-Shin;Joo Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.227-232
    • /
    • 2006
  • In this paper, we propose a systematic method for intelligent digital redesign of a fuzzy-model-based controller for continuous-time nonlinear system which may also contain system uncertainties. The continuous-time uncertain TS fuzzy model is first contructed to represent the uncertain nonlinear system. A parallel distributed compensation(PDC) technique is then used to design a fuzzy-model-based controller for both stabilization. The designed continuous-time controller is then converted to an equivalent discrete-time controller by using a globally intelligent digital redesign method. This new technique is designed by a global matching of state variables between analog control system and digital control system. This new design technique provides a systematic and effective framework for integration of the fuzzy-model-based control theory and the advanced digital redesign technique for nonlinear systems with uncertainties. Finally, Chaotic Lorenz system is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.